De novo shoot organogenesis from mature leaf–derived callus and ex vitro acclimatization of Cadaba fruticosa (L.) Druce: an endangered shrub of pharmaceutical values

Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613. https://doi.org/10.3389/fpls.2017.00613

Article  PubMed  PubMed Central  Google Scholar 

Aluri RJS (1990) Studies on pollination in India: a review. Proc Natl Acad Sci India 56:375–388

Google Scholar 

Amudha M, Rani S (2014) Assessing the bioactive constituents of Cadaba fruticosa (L.) Druce through GC-MS. Int J Pharm Pharm Sci 6:383–385

Google Scholar 

Asthana P, Rai MK, Jaiswal U (2024) 6-Benzylaminopurine mediated indirect organogenesis in Sapindus trifoliatus L. through internodal segments. Vegetos. https://doi.org/10.1007/s42535-024-00873-9

Article  Google Scholar 

Bhandari MM (1995) Flora of the Indian desert. In: MPS Repros, Jodhpur, India, pp 35–36

Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, Delhi. https://doi.org/10.1007/978-81-322-1026-9

Book  Google Scholar 

Capriotti L, Ricci A, Molesini B, Mezzetti B, Pandolfini T, Piunti I, Sabbadini S (2023) Efficient protocol of de novo shoot organogenesis from somatic embryos for grapevine genetic transformation. Front Plant Sci 14:1172758. https://doi.org/10.3389/fpls.2023.1172758

Article  PubMed  PubMed Central  Google Scholar 

Chavre BW (2020) A comprehensive review on Cadaba fruticosa (L.) Druce. India J Appl Pure Bio 35:7–15

Google Scholar 

Chen YT, Yang TH, Yu TA (2023) Ex vitro rooting of minicutting of Carica papaya L. single shoot from tissue culture. In Vitro Cell Dev Biol - Plant 59:393–400. https://doi.org/10.1007/s11627-023-10344-6

Article  CAS  Google Scholar 

Choudhary SK, Patel AK, Harish SS, Shekhawat NS (2017) An improved micropropagation system, ex vitro rooting and validation of genetic homogeneity in wild female Momordica dioica: an underutilized nutraceutical vegetable crop. Physiol Mol Biol Plant 23:713–722. https://doi.org/10.1007/s12298-017-0441-z

Article  CAS  Google Scholar 

Costa ADO, Silva LAS, Duarte IM, Machado M, Silva GZ, Silva DFP, Netto APC, Rocha DI (2020) Shoot proliferation and in vitro organogenesis from shoot apex and cotyledonary explants of royal poinciana (Delonix regia), an ornamental leguminous tree. Trees 34:189–197. https://doi.org/10.1007/s00468-019-01910-w

Article  CAS  Google Scholar 

Dinesh RM, Patel AK, Vibha JB, Shekhawat S, Shekhawat NS (2019) Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos 32:181–189. https://doi.org/10.1007/s42535-019-00021-8

Article  Google Scholar 

Fehér A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Šamaj J (eds) Somatic embryogenesis. Plant cell monographs, vol 2. Springer, Berlin, Heidelberg, Germany, pp 85–101. https://doi.org/10.1007/7089_019

Firoozabady E, Moy Y (2004) Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cell Dev Biol - Plant 40:67–74. https://doi.org/10.1079/IVP2003494

Article  Google Scholar 

He J, Qi T, Yang J, Xu Q, Zou L, Ma Y (2023) Development of an efficient micropropagation protocol for Nematanthus wettsteinii using leaf and shoot-tip explants. In Vitro Cell Dev Biol - Plant 21:1–9. https://doi.org/10.1007/s11627-023-10384-y

Article  CAS  Google Scholar 

Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451. https://doi.org/10.1242/dev.134668

Article  CAS  PubMed  Google Scholar 

Irshad M, He B, Liu S, Mitra S, Debnath B, Li M, Rizwan HM, Qiu D (2017) In vitro regeneration of Abelmoschus esculentus l. cv. wufu: influence of anti-browning additives on phenolic secretion and callus formation frequency in explants. Hortic Environ Biotechnol 58:503–513. https://doi.org/10.1007/s13580-017-0301-3

Article  CAS  Google Scholar 

Jabbar AA, Khan S, Kazmi MH, Malik A, Fatima I, Inamullah F, Farheen S, Naqvi B (2023) Cadabatone, a new sesquiterpene lactone from Cadaba fruticosa. Chem Nat Compd 59:278–281. https://doi.org/10.1007/s10600-023-03976-y

Article  CAS  Google Scholar 

Juliet YS, Kalimuthu K, Chinnadurai V, Krishnasamy R (2017) Effect of growth regulators on direct shoot formation from leaf explant and antioxidant activity of in situ and in vitro plants of Cadaba fruticosa - an endemic medicinal plant. Euro J Med Plant 18:1–10. https://doi.org/10.9734/EJMP/2017/32507

Article  Google Scholar 

Karthiyayini R, Dhanya P, Kom YD, Swaminathan A (2020) Evaluation of in vitro antioxidant activity of two Indian medicinal plants. In: Proceedings of International Conference on Drug Discovery (ICDD) 2020. Available at SSRN: https://ssrn.com/abstract=3532448. Accessed 30 May 2024

Kher MM, Nataraj M (2020) In vitro regeneration competency of Crataeva nurvala (Buch Ham) callus. Vegetos 33:52–62. https://doi.org/10.1007/s42535-019-00080-x

Article  Google Scholar 

Kikowska M, Thiem B, Szopa A, Ekiert H (2020) Accumulation of valuable secondary metabolites: phenolic acids and flavonoids in different in vitro systems of shoot cultures of the endangered plant species Eryngium alpinum L. Plant Cell Tiss Org Cult 141:381–391. https://doi.org/10.1007/s11240-020-01795-5

Article  CAS  Google Scholar 

Lodha D, Patel AK, Rai MK, Shekhawat NS (2014) In vitro plantlet regeneration and assessment of alkaloid contents from callus cultures of Ephedra foliata (Unth phog), a source of anti-asthmatic drugs. Acta Physiol Plant 36:3071–3079. https://doi.org/10.1007/s11738-014-1677-7

Article  CAS  Google Scholar 

Lodha D, Patel AK, Shekhawat NS (2015) A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub. Physiol Mol Biol Plant 21:407–415. https://doi.org/10.1007/s12298-015-0310-6

Article  CAS  Google Scholar 

Long Y, Yang Y, Pan G, Shen Y (2022) New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13:926752. https://doi.org/10.3389/fpls.2022.926752

Article  PubMed  PubMed Central  Google Scholar 

Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.13993054.1962.tb08052.x

Article  CAS  Google Scholar 

Pang J, Xiong Y, Zeng Y, Chen X, Zhang X, Li Y, Wu K, Zeng S, Teixeira da Silva JA, Ma G (2023) Shoot organogenesis and plant regeneration from leaf and petiole explants of Corydalis saxicola Bunting. In Vitro Cell Dev Biol - Plant 59:121–128. https://doi.org/10.1007/s11627-022-10322-4

Article  CAS  Google Scholar 

Panwar D, Patel AK, Shekhawat NS (2018) An improvised shoot amplification and ex vitro rooting method for offsite propagation of Tinospora cordifolia (Willd.) Miers: a multi-valued medicinal climber. Indian J Plant Physiol 23:169–178. https://doi.org/10.1007/s40502-018-0350-3

Article  CAS  Google Scholar 

Patel AK, Agarwal T, Phulwaria M, Kataria V, Shekhawat NS (2014) An efficient in vitro plant regeneration system from leaf of mature plant of Leptadenia reticulata (Jeewanti): a life giving endangered woody climber. Ind Crop Prod 52:499–505. https://doi.org/10.1016/j.indcrop.2013.11.025

Article  CAS  Google Scholar 

Patel AK, Lodha D, Ram K, Shekhawat S, Shekhawat NS (2016) Evaluation of physiochemical factors affecting high-frequency plant regeneration of Blyttia spiralis (Forssk.) D.V. Field & J.R.I. Wood [Synonym: Pentatropis spiralis (Forssk.) Decne.], a threatened climber of medicinal values. In Vitro Cell Dev Biol - Plant 52:10–19. https://doi.org/10.1007/s11627-015-9738-1

Article  CAS  Google Scholar 

Patel AK, Lodha D, Shekhawat NS (2020) An improved micropropagation protocol for the ex situ conservation of Mitragyna parvifolia (Roxb.) Korth. (Rubiaceae): an endangered tree of pharmaceutical importance. In Vitro Cell Dev Biol - Plant 56:817–826. https://doi.org/10.1007/s11627-020-10089-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pence VC, Bruns EB (2024) Scratching the surface: the in vitro research that will be critical for conserving exceptional plants to scale. In Vitro Cell Dev Biol - Plant. https://doi.org/10.1007/s11627-023-10405-w

Article  Google Scholar 

Pospóšilová J, Tichá I, Kadleček P, Haisel D, Plzáková Š (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497. https://doi.org/10.1023/A:1002688208758

Article  Google Scholar 

POWO (2024) Royal Botanical Gardens, Kew: Plants of the World Online. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:146198-1. Accessed on 30 May 2024

Ram K, Patel AK, Choudhary SK, Shekhawat NS (2022) Synergetic effects of TDZ with various phytohormones on high-frequency plant regeneration from mature nodal explants of Capparis decidua and their ex vivo implications. Plant Cell Tiss Org Cult 149:621–633. https://doi.org/10.1007/s11240-022-02234-3

Article  CAS  Google Scholar 

Rathore MS, Patel PR, Siddiqui SA (2020) Callus culture and plantlet regeneration in date palm (Phoneix dactylifera L.): an important horticultural cash crop for arid and semi-arid horticulture. Physiol Mol Biol Plant 26:391–398. https://doi.org/10.1007/s12298-019-00733-w

Article  CAS  Google Scholar 

Rency AS, Pandian S, Ramesh M (2018) Influence of a

留言 (0)

沒有登入
gif