H. Li, Z. Kang, Y. Liu, & S. T. Lee, Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 22(46), 24230 (2012); https://doi.org/10.1039/C2JM90163C.
S. Zhu, Q.Meng, L.Wang, J.Zhang, Y.Song, H.Jin, ... & B.Yang,. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition, 52(14), 3953 (2013); http://dx.doi.org/10.1002/anie.201300519.
S.L Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, & X.W. Du. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry B, 2(7), 1021 (2014); https://doi.org/10.1039/B812943F.
S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, & S. Aa. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chemie International Edition, 54 (42), 12395 (2015); https://doi.org/10.1002/anie.201206791.
J. Kai, S. Sun, L. Zhang, Y. Lu, A. Wu, & C. Cai, Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. AngewandteChemie International Edition, 54(18), 5360 (2015); https://doi.org/10.1002/ange.201501193.
G, Guili, Lin Li, Dan Wang, Mingjian Chen, Zhaoyang Zeng, Wei Xiong, Xu Wu, and Can Guo. Carbon dots: Synthesis, properties and biomedical applications. Journal of Materials Chemistry 9(33), 6553 (2021); https://doi.org/10.1039/D1TB01077H.
L, Meng Li, Bin Bin Chen, Chun Mei Li, and Cheng Zhi Huang. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green chemistry 21(3) 449 (2019); https://doi.org/10.1039/C8GC02736F.
J. Łukasz, J. Radwan-Pragłowska, M.Piątkowski, and D.Bogdał. Smart, tunable CQDs with antioxidant properties for biomedical applications—ecofriendly synthesis and characterization. Molecules, 25(3), 736 (2020); https://doi.org/10.3390/molecules25030736.
Z. Chunyan, Z. Chen, S Gao, B.L. Goh, I.B. Samsudin, K.W. Lwe, Y.Wu, C. Wu, and XiaodiSu. Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6) 628 (2019); https://doi.org/10.1016/j.pnsc.2019.11.007.
D, Adita, and Preston T. Snee. Synthetic developments of nontoxic quantum dots. ChemPhysChem, 17(5), 598 (2016); https://doi.org/10.1002/cphc.201500837.
A, Nayab, Murtaza Najabat Ali, and Tooba Javaid Khan. Carbon quantum dots for biomedical applications: review and analysis. Frontiers in Materials, 8, 700403 (2021); https://doi.org/10.3389/fmats.2021.700403.
K, Ajaypal, K. Pandey, R. Kaur, N.Vashishat, and M. Kaur. Nanocomposites of carbon quantum dots and graphene quantum dots: environmental applications as sensors. Chemosensors, 10(9) 367 (2022); https://doi.org/10.3390/chemosensors10090367.
C, Bin Bin, Meng Li Liu, and Cheng Zhi Huang. Carbon dot-based composites for catalytic applications. Green Chemistry, 22(13), 4034 (2020); https://doi.org/10.1039/D0GC01014F.
S. Karamveer, H. Kaur, S.Siwal, A. Saini, Dai-Viet N. Vo, and V. Thakur. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere, 299, 134364 (2022); https://doi.org/10.1016/j.chemosphere.2022.134364.
C. Kokkonda J. Sugunakara, A. Sharma, and A. Singh. Carbon Quantum Dots in Healthcare: A Promising Solution for Sustainable Healthcare and Biomedical Practices. In E3S Web of Conferences, 453, 01017. EDP Sciences, (2023); https://doi.org/10.1051/e3sconf/202345301017.
S. Hu, A. Trinchi, & P. Atkin. Engineering carbon quantum dots for photomediatedtheranostics. Nanoscale, 7(47), 20233 (2015); https://doi.org/10.1007/s12274-017-1616-1.
W. Y., et al. Microwave-assisted green synthesis of carbon dots from food waste for colorimetric and fluorometric detection of Hg2+ ions. Nanomaterials, 5(4), 1497 (2015); http://dx.doi.org/10.1016/j.snb.2013.04.079.
K. Z. et al. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science, 72, 1 (2015); https://doi.org/10.1016/j.pmatsci.2006.10.016.
Yu, H., et al. Microwave and ultrasonic assisted synthesis of carbon quantum dots with multi-color emission from 4-aminophenol and their applications for sensitive detection of mercury ions. Sensors and Actuators B: Chemical, 224, 926 (2016); http://dx.doi.org/10.1039/C9TC01640F.
Z. M., et al. One-pot to synthesize multifunctional carbon dots for near-infrared fluorescence imaging and photothermal cancer therapy. ACS Applied Materials & Interfaces, 5(22), 11337(2013); https://pubs.acs.org/doi/abs/10.1021/acsami.6b07453.
Qu, D., et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 4, 5294 (2016); https://doi.org/10.1038/srep05294.
W. L., et al. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry B, 5(32), 6099 (2017); https://doi.org/10.1039/C4TC00988F.
Xu, X., et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 136(36), 12536 (2014); https://doi.org/10.1021/ja040082h.
L, H., et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 18(19), 4888 (2016); https://doi.org/10.1039/C8GC02736F.
J. K., et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. AngewandteChemie International Edition, 54(18), 5360 (2015); https://doi.org/10.1002/ange.201501193.
R. Guoxin, S.R. Corrie, and H.A. Clark. In vivo biosensing: progress and perspectives. ACS sensors, 2(3), 327 (2017); https://doi.org/10.1021/acssensors.6b00834.
R.S.C., et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. Journal of Physical Chemistry C, 113(43), 18546 (2009); https://doi.org/10.1021/jp905912n.
Y. F., et al. Carbon dots with concentration-dependent photoluminescence properties for quantitative detection of ferric ions. Scientific Reports, 6, 33579 (2016); https://doi.org/10.23860/diss-sun-jiadong-2016.
D. Y., et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. AngewandteChemie International Edition, 51(40), 9751 (2012); https://doi.org/10.1002/anie.201301114.
Y.S.T., et al. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 134(15), 692 (2013); https://doi.org/10.1021/ja904843x.
A. Anoud, A. Fathima, A. H. Alhasan, and E. H. Alsharaeh. PEG coated Fe3O4/RGO nano-cube-like structures for cancer therapy via magnetic hyperthermia. Nanomaterials, 11(9), 2398 (2021); https://doi.org/10.3390/nano11092398.
Z. M., et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano, 11(1), 349 (2017); https://doi.org/10.1021/acsnano.6b06267.
Y. Y.et al. Multifunctional theranostic nanoplatform for cancer combined therapy based on a single nano-drug delivery system. ACS Applied Materials & Interfaces, 11(48), 44608 (2019); https://doi.org/10.1002/adhm.201500453.
Qu, D., et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 5(24), 12272 (2013); https://doi.org/10.1039/C3NR04402E.
R.F. Guillermo, J.C. Canga, A.S.J orge, R.Encinar, and J. M. Costa-Fernandez. Functionalized heteroatom-doped carbon dots for biomedical applications: A review. Analytica Chimica Acta 341874 (2023); https://doi.org/10.1016/j.aca.2023.341874.
Li, X., et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Chemical Communications, 48(71), 8930 (2012); https://doi.org/10.1002/adfm.201200166.
Lu, J., et al. Carbon-based quantum dots for photodynamic and photothermal therapy of cancer. Biomaterials Science, 5(9), 1602 (2017); https://doi.org/10.3389/fphar.2018.01401.
Wenfeng Wei, Xiaoyuan Zhang, Shan Zhang, Gang Wei, Zhiqiang Su. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering: C, 104, 109891 (2019); https://doi.org/10.1016/j.msec.2019.109891.
Z. Ming, W.Wang, N. Zhou, P.Yuan, Y. S.Maoni Shao, C. Chi, and F. Pan. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 118, 752 (2017); https://doi.org/10.1016/j.carbon.2017.03.085.
D.A. Shiralizadeh, E.Kohan, S. Fateh, N.Alimirzaei, H.Arzaghi, and M. Hamblin. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC advances, 11(4), 2253 (2021); https://doi.org/10.1039/D0RA08041A.
L. Hangqi, and Shuai Gao. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. Journal of Controlled Release, 362, 425 (2023); https://doi.org/10.1016/j.jconrel.2023.08.056.
A Mehran, E. Jabari, and E. Jabbari. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-infective Therapy, 19(1), 35 (2021); https://doi.org/10.1080/14787210.2020.1810569.
B. Kathirvel, H. Garalleh, A. Alalawi, E. Al-Sarayreh, and A. Pugazhendhi. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochemical Engineering Journal, 192, 108828 (2023); https://doi.org/10.1016/j.bej.2023.108828.
M. Jafar. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 196, 456 (2019); https://doi.org/10.1016/j.talanta.2018.12.042.
G. Vardan. Quantum dots: Perspectives in next-generation chemical gas sensors”‒A review. Analytica Chimica Acta, 1152, 238192 (2021); https://doi.org/10.1016/j.aca.2020.12.067.
Kaur, Inderbir, V. Batra, N. Reddy, B. Simei D.T. Landa, and V. Agarwal. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chemistry, 406, 135029. (2023); https://doi.org/10.1016/j.foodchem.2022.135029.
D. Jyoti, G.K. Rao, and D.Vaya. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RSC Sustainability, 2(1), 11 (2024); https://doi.org/10.1039/D3SU00375B.
Onat, Erhan, M. Izgi, Ö. Şahin, and C. Saka. Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment. International Journal of Hydrogen Energy, 51, 362 (2024); https://doi.org/10.1016/j.ijhydene.2023.08.176.
J. Xu, et al. Synthesis of nitrogen-doped graphene quantum dots for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2(14), 5415 (2014); https://doi.org/10.1016/j.microc.2023.109830.
Z. L., et al. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 12(2), 492 (2019); https://doi.org/10.1039/C2EE22982J.
Du, X‐Yun, C. Wang, G. Wu, and S.Chen. The rapid and large‐scale production of carbon quantum dots and their integration with polymers. AngewandteChemie International Edition, 60(16), 8585 (2021); http://dx.doi.org/10.1002/ange.202004109.
C. Liu, et al. Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting p-nitrophenol in water. Analytical Chemistry, 88(12), 6637 (2016); https://doi.org/10.1039/C4AN01869A.
L. Qu, & L. Dai, Nitrogen-doped graphene quantum dots: synthesis and functional applications. Materials Today, 19(10), 594 (2016); https://doi.org/10.3390/polym14112153.
S. Yanika, J. Chalitangkoon, and P.Monvisade. Improving the Fluorescence of Carbon Dots Through Boron and Silver Doping: A Single-Step Microwave Synthesis Approach. (2024); https://doi.org/10.33263/BRIAC142.044.
R. Liu, et al. One-step hydrothermal synthesis of nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of mercury ions in living cells. Analytica Chimica Acta, 993, 56 (2017); https://doi.org/10.1016/j.bios.2015.06.050.
Liu, Ze Xi, Bin Bin Chen, Meng Li Liu, Hong Yan Zou, and Cheng Zhi Huang. Cu (i)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 19 (6), 1494 (2017); https://doi.org/10.1039/C7GC00296C.
S. Farooq, I. Ziani, M. Smith, G. Chugreeva, S. Hashimzada, L.D. Prola, J. Sulejmanović, and E.K. Sher. Carbon quantum dots conjugated with metal hybrid nanoparticles as advanced electrocatalyst for energy applications–A review. Coordination Chemistry Reviews, 500, 215499 (2024); https://doi.org/10.1016/j.ccr.2023.215499.
G. Wensu, S. Zhang, G. Wang, J. Cui, Y, X. Rong, and C. Gao. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International (2022); https://doi.org/10.1016/j.ceramint.2022.10.116.
Sharma, Sheetal, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, and V. Thakur. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. Journal of Cleaner Production, 228, 755 (2019); https://doi.org/10.1016/j.ceramint.2022.10.116.
Vyas, Yogeshwari, P. Chundawat, D. Dharmendra, P.B. Punjabi, and C. Ameta. Review on hydrogen production photocatalytically using carbon quantum dots: future fuel. International Journal of Hydrogen Energy, 46(75), 37208 (2021); https://doi.org/10.1016/j.ijhydene.2021.09.004.
W. Jiamei, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, and X. Li. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry, 25(1), 32 (2023); https://doi.org/10.1039/D2GC03160D.
R. Fazal, A. Hayat, M. Humayun, S.B. Mane, M.B. Faheem, A. Ali, Y. Zhao et al. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Applied Catalysis B: Environmental, 270, 118867 (2020); https://doi.org/10.1016/j.apcatb.2020.118867.
G. Yun-Nan, Bi-Zhu Shao, J. Mei, W.Yang, D.Zhong, and T.Lu. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Research 15 (1), 551 (2022); https://doi.org/10.1007/s12274-021-3519-4.
Q. Wang, Z. Fang, X. Zhao, C. Dong, Y. Li, C. Guo, Q. Liu, F. Song and W. Zhang, Interfaces, Biotemplated g-C3N4/Au Periodic Hierarchical Structures for the Enhancement of Photocatalytic CO2 Reduction with Localized Surface Plasmon Resonance, ACS Appl. Mater. 13, 59855 (2021); https://doi.org/10.1021/acsami.1c16811.
W. Meng, Q. Liang, J. Han, Y. Tao, D. Liu, C. Zhang, W. Lv, and Q. Yang. Catalyzing polysulfide conversion by gC3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 11, 3480 (2018); https://doi.org/10.1007/s12274-018-2023-y.
W. Qingtong, Z. Fang, X. Zhao, C. Dong, Y. Li, C. Guo, Q.Liu, F. Song, and W. Zhang. Biotemplated g-C3N4/Au periodic hierarchical structures for the enhancement of photocatalytic CO2 reduction with localized surface plasmon resonance. ACS Applied Materials & Interfaces, 13(50), 59855 (2021); https://doi.org/10.1021/acsami.1c16811.
J. Haopeng, X. Li, S. Chen, H. Wang, and P. Huo. g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction. Journal of Materials Science: Materials in Electronics, 31 (22), 20495 (2020); https://doi.org/10.1007/s10854-020-04568-0.
W. Yanan, X. Li, Y. Zhang, Y. Yan, P. Huo, and H. Wang. G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction. Renewable Energy, 179, 756 (2021); https://doi.org/10.1016/j.renene.2021.07.091.
H. Fei, Bicheng Zhu, Bei Cheng, Jiaguo Yu, Wingkei Ho, and Wojciech Macyk. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 272, 119006 (2020); https://doi.org/10.1016/j.apcatb.2020.119006.
M. Que, Y. Zhao, Y. Yang, L. Pan, W. Lei, W. Cai, H. Yuan, J. Chen and G. Zhu. Anchoring of Formamidinium Lead Bromide Quantum Dots on Ti3C2 Nanosheets for Efficient Photocatalytic Reduction of CO2. ACS Appl. Mater. Interfaces, 13, 6180 (2021); https://doi.org/10.1021/acsami.0c18391.
W. Hanmei, R. Zhao, H. Hu, X. Fan, D. Zhang, and D.Wang. 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Applied Materials & Interfaces, 12(36), 40176 (2020); https://doi.org/10.1021/acsami.0c01013.
H. Zhujian, M. Shen, J. Liu, J. Ye, and T. Asefa. Facile synthesis of an effective gC3N4-based catalyst for advanced oxidation processes and degradation of organic compounds. Journal of Materials Chemistry A, 9(26), 14841 (2021); https://doi.org/10.1039/D1TA01325D.
H. Biting, J. He, S. Bian, C. Zhou, Z. Li, F. Xi, J. Liu, and X. Dong. S-doped graphene quantum dots as nanophotocatalyst for visible light degradation. Chinese Chemical Letters, 29(11), 1698 (2018); https://doi.org/10.1016/j.cclet.2018.01.004.
C. Huinan, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C.Li, and H. Dong. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme gC3N4/Bi2WO6 heterojunctions. Catalysis Science & Technology, 8(2), 622 (2018); https://doi.org/10.1039/C7CY01709J.
Y. Ming, F. Zhu, W. Gu, L. Sun, W. Shi, and Y. Hua. Construction of nitrogen-doped graphene quantum dots-BiVO4/gC3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light. Rsc Advances, 6(66), 61162 (2016); https://doi.org/10.1039/C6RA07589D.
L. Xue, Da. Xu, R. Zhao, Y. Xi, L. Zhao, M. Song, H. Zhai, G. Che, and L. Chang. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Separation and Purification Technology, 178, 163 (2017); https://doi.org/10.1016/j.seppur.2017.01.020.
L. Chunxue, H. Che, C. Liu, G. Che, P.A. Charpentier, W.Z. Xu, X. Wang, and L. Liu. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. Journal of the Taiwan Institute of Chemical Engineers, 95, 669 (2019); https://doi.org/10.1016/j.jtice.2018.10.011.
Z. Ping, B. Jin, Q. Zhang, and R. Peng. Graphitic-C3N4 quantum dots modified FeOOH for photo-Fenton degradation of organic pollutants. Applied Surface Science, 586, 152792 (2022); https://doi.org/10.1016/j.apsusc.2022.152792.
L. Yuhan, K.L, Wingkei H.F. Dong, X. Wu, and Y. Xia. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Applied Catalysis B: Environmental, 202, 611 (2017); https://doi.org/10.1016/j.apcatb.2016.09.055.
C. Yanqing, X. Chen, Y. Xu, Y. Zhang, H. Liu, H. Zhang, and J. Tang. Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives. Carbon Energy, 6(2), e501 (2024); https://doi.org/10.1002/cey2.501.
J. Jizhou, Z. Xiong, H. Wang, G. Liao, S. Bai, J. Zou, P. Wu, P. Zhang, and X. Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. Journal of Materials Science & Technology, 118, 15 (2022); https://doi.org/10.1016/j.jmst.2021.12.018.
Z.J. Ping, L. Wang, J. Luo, Y. Nie, Q. Xing, X. Luo, H. Du, S. Luo, and S.L. Suib. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental 193, 103 (2016); https://doi.org/10.1016/j.apcatb.2016.04.017.
G. Jacek, J. Lin, Y.C. Li, E. Jokar, C. Chang, C. Peng et al. Sulfur‐doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. ChemSusChem, 10(16); 3260 (2017); https://doi.org/10.1002/cssc.201700910.
W. Yaping, Y. Li, J. Zhao, J. Wang, and Z. Li. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 44(2), 618 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.067.
Z. Zhiling, H. Luo, T. Wang, C. Zhang, M. Liang, D. Yang, M. Liu et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold–silver nanocage heterostructures for antimicrobial applications. Chemistry of Materials, 34(3), 1356 (2022); https://doi.org/10.1021/acs.chemmater.1c03952.
K. Qingquan, X. An, L. Huang, X. Wang, W. Feng, S. Qiu, Q. Wang, and C. Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance. Frontiers of Physics, 16(5), 53506 (2021); https://doi.org/10.1007/s11467-021-1066-9.
Z. Jing, G. Liao, J. Jiang, Z. Xiong, S. Bai, H. Wang, P. Wu, P. Zhang, and X. Li. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Structural Chemistry, 41(1), 2201025 (2022); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.
J. Jiang, Y. Zou, Arramel, F. Li, J. Wang, J. Zou and N. Li, 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustainable Chemistry & Engineering, 8(48), 17791 (2020); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.
Q. Jiangzhou, Baojun Liu, Kwok-Ho Lam, Shijie Song, Xinyong Li, and Xia Hu. 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustainable Chemistry & Engineering, 8(48), 17791 (2020); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.
W. Gao, X. Li, S. Luo, Z. Luo, X. Zhang, R. Huang and M. Luo, Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold–silver nanocage heterostructures for antimicrobial applications. Chemistry of Materials, 34(3) 1356 (2022); https://doi.org/10.1021/acs.chemmater.1c03952.
Z. Zhu, H. Luo, T. Wang, C. Zhang, M. Liang, D. Yang, M. Liu, W. W. Yu, Q. Bai, L. Wang and N. Sui, Chem. Mater., Insights into different dimensional MXenes for photocatalysis. Chemical Engineering Journal, 424, 130340 (2021); https://doi.org/10.1016/j.cej.2021.130340.
K. Zhang, D. Li, H. Cao, Qi. Zhu, C. Trapali, P. Zhu, X. Gao and C. Wang, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 10(9), 1867 (2021); https://doi.org/10.1039/C2EE22982J.
Y, Hong, J. Liu, H. Li, Yongjian Li, X. Liu, D. Shi, Q. Wu, and Q. Jiao. Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. Journal of Materials Chemistry A, 6(14), 5603 (2018); https://doi.org/10.1039/C8TA00205C.
L.S.Y. Shen, W., & G, Z. Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362 (2015); https://doi.org/10.1039/C4CS00269E.
M. Peng, K. Han, Y. Tang, B. Wang, T. Lin, and W. Cheng. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale, 7(5), 1586 (2015); https://doi.org/10.1039/C4NR05712K.
留言 (0)