P. Selvarajan, B.N. Das, H.B. Gon, K.V. Rao, Growth, Structural, Optical, Mechanical and Dielectric Characterization of Diammonium Hydrogen Phosphate (DAHP) Single Crystals. J. Mater. Sci. 29, 4061 (1994); https://doi.org/10.4236/jmmce.2011.1015108.
N. Balamurugan, M. Lenin, .G. Bhagavannarayana and P. Ramasamy, Growth of TGS crystals using uniaxially solution-crystallization method of Sankaranarayanan-Ramasamy. Crystal Res. Technol. 42, 151 (2007); https://doi.org/10.1002/crat.200610788.
C. Berbecaru, H.V. Alexandru, L. Pintilie A, Dutu, B. Logofatu and Radulescu, Doped versus pure TGS crystals, Materials Sci. Engg. B. 11, 141 (2005); https://doi.org/10.1016/j.mseb.2004.12.069.
Alexander McPherson, Alexander J. Malkin, Yu.G. Kuznetsov, Stanley Koszelak, Investigations on Various Studies of TriglycineSulphophosphate Crystals Doped With Cesium Chloride. J. Cryst. Growth 168, 74 (1996); https://doi.org/10.9790/4861-17002030914.
R. Muralidharan, R. Mohankumar, P.M. Ushasree, R. Jayavel and P. Ramasamy, Effect of rare- earth dopants on the growth and properties of triglycine sulphate crystals. J.Crystal Growth. 234, 545 (2002);
https://doi.org/10.1016/S0022-0248(01)01723-7.
C.S. Fang, H. Liu, H.S. Zhuo, M. Wang and D. Xu, A new modified TGS crystal. Cryst. Res. Technol. 30, 785 (1993); https://doi.org/10.1002/crat.2170300612
M.J. Ibrahim and T.M. Al-Saadi, IOP Conf. Ser.: Mater. Sci. Eng. 871, 012082 (2020); https://doi.org/10.1088/1757-899X/793/1/011001.
Mher.J. Ibrahim and TagreedM.Al-Saadi, Structural and Opticall Properties of Pure and doped Triglycine Sulphate Crystal Grown by slow evaporation technique”, AIPConfrence Proceedings 2123, 020015 (2019); http://dx.doi.org/10.1063/1.5116942.
P. Manoharan and N. Neelakanda Pillai, Archives of Applied Science Research, 5(1), 93 (2013); http://scholarsresearchlibrary.com/archive.html.
R.B. Lal & A.K. Batra, Growth and properties of triglycine sulphate (TGS) crystals: Review, Ferroelectrics, 142, 51 (1993);https://doi.org/10.1080/00150199308237884.
X. Sun, M. Wang, Q.W. Pan, W. Shi, and C.S. Fang, Study on the growth and properties of guanidine doped triglycine sulfate crystal, Crystal Research and Technology, 34(10), 1251 (1999); https://ui.adsabs.harvard.edu/link_gateway/1999CryRT..34.1251S/doi:10.1002/(SICI)1521-4079(199912)34:10%3C1251::AID-CRAT1251%3E3.0.CO;2-G.
K. Biedrzycki, Energy distribution of electron emission from -α alanine doped TGS single crystals, Solid State Communications, 118(3), 141 (2001); https://doi.org/10.1016/S0038-1098(01)00052-7.
G. Su, Y. He, H. Yao, Z. Shi, and Q. Wu, New pyroelectric crystal L-lysine-doped TGS (LLTGS), Journal of Crystal Growth, 209(1), 220 (2000); http://dx.doi.org/10.1016/S0022-0248(99)00591-6.
S. Aravazhi, R. Jayavel, and C. Subramanian, Growth and characterization of benzophenone and urea doped triglycine sulphate crystals, Ferroelectrics, 200(1-4), 279 (1997); https://doi.org/10.1080/00150199708008612.
N.T. Shanthi, P. Selvarajan, and C.K. Mahadevan, Studies on TriglycineSulfate (TGS) crystals doped with sodium bromide NaBr grown by solution method, Indian Journal of Science and Technology, 3, 49 (2009); https://doi.org/10.17485/ijst/2009/v2i3/29414.
V.V. Ghazaryan, M. Fleck, A.M. Petrosyan, Spectrochimica Acta Part A 78, 128, (2011); https://doi.org/10.1016/j.saa.2010.09.009.
J.M. De Man, F.W.Wood ,Hardness of Butter.I. Influence of Season and Manufacturing Method Microindentation hardness testing, J. Dairy Sci.41, 360 (1958); https://doi.org/10.3168/jds.S0022-0302(58)90928-7.
Y.L. Ke, F.X. Dong, Hardness of materials: studies at levels from atoms to crystals. Chinese Sci. Bull. 54, 131 (2009); https://doi.org/10.1007/s11434-008-0550-8.
P.N. Kotru, Sushma Bhat and K.K. Raina, Microhardness measurements on single crystals of gel-grown rare-earth (Nd) molybdate and paramolybdate, J. Mater., Sci. Lett. 8, 587, (1989); https://doi.org/10.1007/BF00720308.
E. Meyer, Z. ver. Deut. Ing. 52, 645, (1908);
S. Balamurugan, P.Ramasamy, Bulk growth of <101> KDP crystal by Sankaranarayanan – Ramasamy method and it’s characterization, Mater. Chem. Phy. 112, 1, (2008); https://doi.org/10.1016/j.matchemphys.2008.05.058.
P.J. Blau, B.R.Lawn, Microindentation Techniques in Materials Science and Engineering, (1985).
W.A. Wooster, Physical properties and atomic arrangements in crystals, Rep. Progr. Phys. 16, 62, (1953); https://doi.org/10.1088/0034-4885/16/1/302.
M. N. Ravishankar, M. A. Ahlam, R. Chandramani and A. P. Gnana Prakash, “Comparative Study of Mechanical, Dielectric and Electrical Properties of Solution Grown Semi-Organic NLO Crystal Glycine with Additives-Ammonium Oxalate, Potassium and Barium Nitrate”, Indian Journal of Pure and Applied Physics, 51, 55-59 (2013).
B.R Lawn, E.R Fuller, Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016 (1975); http://dx.doi.org/10.1007/BF00557479.
K Nihara, R Morena, D.P.H. HHasselman, Evaluationof KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13, (1982); https://doi.org/10.1007/BF00724706.
S.S. Kurtz and T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798, (1968); http://dx.doi.org/10.1063/1.1656857.
M. Krishna Mohan, S. Ponnusamy, C. Muthamizhchelvan, Optics and Laser Technology 97, 321 (2017); https://doi.org/10.1142/s0219581x17600365.
K. Thilaga, P. Selvarajan, S.M. Abdul Kadar, Photoluminescence, Impedance, Thermal Characteristics and Hirshfeld Surface Analysis of Potassium Bisulphate Single Crystals for Third Order NLO Applications.East European Journal of Physics, 145, (2021); https://doi.org/10.26565/2312-4334-2021-4-19.
L. Bányai, Y.Z. Hu, M. Lindberg, S.W. Koch, Phys. Rev. B Condens. Matter Mater. Phys, 38, 8142 (1988); https://doi.org/10.1007/978-1-4615-3726-7_41.
N. SurendraBabu, D. Jayaprakash, Global and reactivity descriptors studies of cyanuric acid tautomers in different solvents by using of density functional theory (DFT). Int J Sci Res 4:,615 (2015); https://www.ijsr.net/getabstract.php?paperid=19051501.
H. Ouafy, M. Aamor, M. Oubenali, M. Mbarki, EL.A. Haimouti, EL T. Ouafy Molecular Structure, electrostatic potential and HOMO, LUMO studies of 4-aminoaniline, 4-nitroaniline and 4-isopropylaniline by DFT. Sci Tech Asia 27, 9 (2002); https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/242269.
L.W. Chung, W.M.C. Sameera, R. Ramozzi, A.J. Page, M. Hatanaka, G.P. Petrova, K. Morokuma, The ONIOM method and its applications. Chem Rev 115, 5678 (2015); https://doi.org/10.1021/cr5004419.
E.D. Glendening, C.R. Landis, F. Weinhold, NBO 6.0: Natural bond orbital analysis program. J Comp Chem 34, 1429 (2013); https://doi.org/10.1002/jcc.23266.
L.I.U. Shu-Bin, Conceptual density functional theory and some recent developments, Acta Phys. Chim. Sin. 25(3), 590 (2009); https://doi.org/10.3866/PKU.WHXB20090332.
P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory, Chem. Rev. 103(5), 1793 (2003); https://doi.org/10.1021/cr990029p.
H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput.Chem. 20(1), 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3C129::AID-JCC13%3E3.0.CO;2-A.
L.H. Mendoza-Huizar, Chemical reactivity of isoproturon, diuron, linuron, and chlorotoluron herbicides in aqueous phase: a theoretical quantum study employingglobal and local reactivity descriptors, J. Chem. 1, 9 (2015); https://doi.org/10.1155/2015/751527.
P.K. Chattaraj, U. Sarkar, D.R. Roy, Electrophilicity index, Chem. Rev. 106(6), 206 (2006); https://dpi.org/10.1021/cr040109f.
Z. Demircioglu, A. Kastas, O. Buyukgungor, Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of €-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol, J. Mol. Struct. 1091, 183 (2015); https://doi.org/10.1016/j.molstruc.2015.02.076.
留言 (0)