Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80. https://doi.org/10.1136/jmg.25.3.173.
Article PubMed PubMed Central CAS Google Scholar
Fasth A, Forestier E, Holmberg E, et al. Fragility of the centromeric region of chromosome 1 associated with combined immunodeficiency in siblings. A recessively inherited entity? Acta Paediatr Scand. 1990;79(6–7):605–12. https://doi.org/10.1111/j.1651-2227.1990.tb11524.x.
Article PubMed CAS Google Scholar
Wijmenga C, Hansen RS, Gimelli G, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17. https://doi.org/10.1002/1098-1004(200012)16:6<509::AID-HUMU8>3.0.CO;2-V.
Article PubMed CAS Google Scholar
Hagleitner MM, Lankester A, Maraschio P, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9. https://doi.org/10.1136/jmg.2007.053397.
Article PubMed CAS Google Scholar
Weemaes CM, van Tol MJ, Wang J, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25. https://doi.org/10.1038/ejhg.2013.40.
Article PubMed PubMed Central CAS Google Scholar
Nitta H, Unoki M, Ichiyanagi K, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60. https://doi.org/10.1038/jhg.2013.56.
Article PubMed CAS Google Scholar
Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3.
Article PubMed PubMed Central Google Scholar
Bousfiha A, Moundir A, Tangye SG, et al. The 2022 update of IUIS Phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20. https://doi.org/10.1007/s10875-022-01352-z.
Gimelli G, Varone P, Pezzolo A, Lerone M, Pistoia V. ICF syndrome with variable expression in sibs. J Med Genet. 1993;30(5):429–32. https://doi.org/10.1136/jmg.30.5.429.
Article PubMed PubMed Central CAS Google Scholar
Kamae C, Imai K, Kato T, et al. Clinical and immunological characterization of ICF Syndrome in Japan. J Clin Immunol. 2018;38(8):927–37. https://doi.org/10.1007/s10875-018-0559-y.
Article PubMed CAS Google Scholar
Smeets DF, Moog U, Weemaes CM, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94(3):240–6. https://doi.org/10.1007/BF00208277.
Article PubMed CAS Google Scholar
Sterlin D, Velasco G, Moshous D, et al. Genetic, Cellular and Clinical features of ICF syndrome: a French National Survey. J Clin Immunol. 2016;36(2):149–59. https://doi.org/10.1007/s10875-016-0240-2.
Article PubMed CAS Google Scholar
Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92. https://doi.org/10.1242/dev.02293.
Article PubMed CAS Google Scholar
Rechavi E, Lev A, Eyal E, et al. A novel mutation in a critical region for the Methyl Donor Binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36(8):801–9. https://doi.org/10.1007/s10875-016-0340-z.
Article PubMed CAS Google Scholar
Thijssen PE, Ito Y, Grillo G et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome [published correction appears in Nat Commun. 2016;7:12003]. Nat Commun. 2015;6:7870. Published 2015 Jul 28. https://doi.org/10.1038/ncomms8870
Karaselek MA, Kurar E, Keleş S, Güner ŞN, Reisli İ. Association of NK cell subsets and cytotoxicity with FCGR3A gene polymorphism in functional NK cell deficiency. Rev Assoc Med Bras (1992). 2024;70(2):e20230872.
Schubach M, Maass T, Nazaretyan L, Röner S, Kircher M. CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 2024;52(D1):D1143–54. https://doi.org/10.1093/nar/gkad989.
Article PubMed PubMed Central Google Scholar
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535–48.
Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004;20(3):426–7. https://doi.org/10.1093/bioinformatics/btg430.
Article PubMed CAS Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article PubMed CAS Google Scholar
van den Boogaard ML, Thijssen PE, Aytekin C, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7. https://doi.org/10.1111/cge.12979.
Article PubMed CAS Google Scholar
Bilgic Eltan S, Nain E, Catak MC, et al. Evaluation of clinical and immunological alterations Associated with ICF Syndrome. J Clin Immunol. 2023;44(1):26. https://doi.org/10.1007/s10875-023-01620-6. Published 2023 Dec 22.
Article PubMed CAS Google Scholar
Sogkas G, Dubrowinskaja N, Bergmann AK et al. Progressive Immunodeficiency with Gradual Depletion of B and CD4⁺ T Cells in Immunodeficiency, Centromeric Instability and Facial Anomalies Syndrome 2 (ICF2). Diseases. 2019;7(2):34. Published 2019 Apr 4. https://doi.org/10.3390/diseases7020034
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In vivo CD4 + T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705–25. https://doi.org/10.1146/annurev-immunol-103019-085803.
Article PubMed CAS Google Scholar
Küççüktürk S, Karaselek MA, Duran T, Reisli İ. Evaluation of transcription factors and cytokine expressions of T-cell subsets in CD19 deficiency and their possible relationship with autoimmune disease. APMIS. 2024;132(2):122–9. https://doi.org/10.1111/apm.13363.
Article PubMed CAS Google Scholar
Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–69. https://doi.org/10.1016/s0092-8674(00)80702-3.
Article PubMed CAS Google Scholar
Lighvani AA, Frucht DM, Jankovic D, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A. 2001;98(26):15137–42. https://doi.org/10.1073/pnas.261570598.
Article PubMed PubMed Central CAS Google Scholar
Wing JB, Sakaguchi S. Multiple treg suppressive modules and their adaptability. Front Immunol. 2012;3:178. https://doi.org/10.3389/fimmu.2012.00178. Published 2012 Jun 29.
Article PubMed PubMed Central CAS Google Scholar
Yang W, Chen X, Hu H. CD4 + T-Cell differentiation in Vitro. Methods Mol Biol. 2020;2111:91–9. https://doi.org/10.1007/978-1-0716-0266-9_8.
Article PubMed CAS Google Scholar
Kim JI, Ho IC, Grusby MJ, Glimcher LH. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity. 1999;10(6):745–51. https://doi.org/10.1016/s1074-7613(00)80073-4.
留言 (0)