Genotypic and phenotypic correlations in tooth agenesis: insights from WNT10A and EDA mutations in syndromic and non-syndromic forms

Alanzi A, Bufersen N, Haider S, Abdulrahim M (2024) Prevalence and distribution of dental anomalies in schoolchildren in Kuwait. Int Dent J 74:566–572. https://doi.org/10.1016/j.identj.2023.10.019

Article  PubMed  PubMed Central  Google Scholar 

AlHudaithi FS, AlDuhayan NA, AlJohani LN et al (2023) Prevalence of dental anomalies among orthodontic patients: A retrospective study in Saudi Arabia. Cureus 15:e49893. https://doi.org/10.7759/cureus.49893

Article  PubMed  PubMed Central  Google Scholar 

Arte S, Parmanen S, Pirinen S et al (2013) Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS ONE 8:e73705. https://doi.org/10.1371/journal.pone.0073705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bäckman B, Holmgren G (1988) Amelogenesis imperfecta: a genetic study. Hum Hered 38:189–206. https://doi.org/10.1159/000153785

Article  PubMed  Google Scholar 

Bal E, Baala L, Cluzeau C et al (2007) Autosomal dominant anhidrotic ectodermal dysplasias at the EDARADD locus. Hum Mutat 28:703–709. https://doi.org/10.1002/humu.20500

Article  CAS  PubMed  Google Scholar 

Biedziak B, Firlej E, Dąbrowska J et al (2022) Novel candidate genes for non-syndromic tooth agenesis identified using targeted next-generation sequencing. J Clin Med 11:6089. https://doi.org/10.3390/jcm11206089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callea M, Bellacchio E, Cammarata Scalisi F et al (2023) Next generation sequencing panel target genes: possible diagnostic tool for ectodermal dysplasia related diseases. Ital J Dermatol Venerol 158(1):32–38

PubMed  Google Scholar 

Castilho NL, Resende KKM, Santos JAD et al (2023) Oligodontia in the clinical spectrum of syndromes: A systematic review. Dent J (Basel) 11:279. https://doi.org/10.3390/dj11120279

Article  PubMed  Google Scholar 

Cavare A, Decaup P-H, Boileau M-J, Garot E (2024) Patterns and sexual dimorphism of non-syndromic hypodontia among a French orthodontic population. Arch Oral Biol 159:105894. https://doi.org/10.1016/j.archoralbio.2024.105894

Article  PubMed  Google Scholar 

Chosack A, Eidelman E, Wisotski I, Cohen T (1979) Amelogenesis imperfecta among Israeli Jews and the description of a new type of local hypoplastic autosomal recessive amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol 47:148–156. https://doi.org/10.1016/0030-4220(79)90170-1

Article  CAS  PubMed  Google Scholar 

Cluzeau C, Hadj-Rabia S, Jambou M et al (2011) Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 32:70–72. https://doi.org/10.1002/humu.21384

Article  CAS  PubMed  Google Scholar 

Das P, Stockton DW, Bauer C et al (2002) Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum Genet 110:371–376. https://doi.org/10.1007/s00439-002-0699-1

Article  CAS  PubMed  Google Scholar 

Dinckan N, Du R, Petty LE et al (2018) Whole-exome sequencing identifies novel variants for tooth agenesis. J Dent Res 97:49–59. https://doi.org/10.1177/0022034517724149

Article  CAS  PubMed  Google Scholar 

Fan H, Ye X, Shi L et al (2008) Mutations in the EDA gene are responsible for X-linked hypohidrotic ectodermal dysplasia and hypodontia in Chinese kindreds. Eur J Oral Sci 116:412–417. https://doi.org/10.1111/j.1600-0722.2008.00555.x

Article  CAS  PubMed  Google Scholar 

Freire-Maia N (1977) Ectodermal dysplasias revisited. Acta Genet Med Gemellol (Roma) 26:121–131. https://doi.org/10.1017/s0001566000009910

Article  CAS  PubMed  Google Scholar 

Garriock RJ, Warkman AS, Meadows SM et al (2007) Census of vertebrate Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16. Dev Dyn 236:1249–1258. https://doi.org/10.1002/dvdy.21156

Article  CAS  PubMed  Google Scholar 

GIEDE (Spanish multidisciplinary research group for ectodermal dysplasia), Martínez-Romero MC, Ballesta-Martínez MJ et al (2019) EDA, EDAR, EDARADD and WNT10A allelic variants in patients with ectodermal derivative impairment in the Spanish population. Orphanet J Rare Dis 14:281. https://doi.org/10.1186/s13023-019-1251-x

Article  Google Scholar 

Gökdere S, Schneider H, Hehr U et al (2022) Functional and clinical analysis of five EDA variants associated with ectodermal dysplasia but with a hard-to-predict significance. Front Genet 13:934395. https://doi.org/10.3389/fgene.2022.934395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haavikko K (1971) Hypodontia of permanent teeth. An Orthopantomographic Study Suom Hammaslaak Toim 67:219–225

CAS  PubMed  Google Scholar 

Haddaji Mastouri M, De Coster P, Zaghabani A et al (2016) Characterization of a novel mutation in PAX9 gene in a family with non-syndromic dental agenesis. Arch Oral Biol 71:110–116. https://doi.org/10.1016/j.archoralbio.2016.07.009

Article  CAS  PubMed  Google Scholar 

Hansen L, Kreiborg S, Jarlov H et al (2007) A novel nonsense mutation in PAX9 is associated with marked variability in number of missing teeth. Eur J Oral Sci 115:330–333. https://doi.org/10.1111/j.1600-0722.2007.00457.x

Article  PubMed  Google Scholar 

He H, Han D, Feng H et al (2013) Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS ONE 8:e80393. https://doi.org/10.1371/journal.pone.0080393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Headon DJ, Emmal SA, Ferguson BM et al (2001) Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 414:913–916. https://doi.org/10.1038/414913a

Article  CAS  PubMed  Google Scholar 

Kanchanasevee C, Chantarangsu S, Pittayapat P, Porntaveetus T (2023) Patterns of nonsyndromic tooth agenesis and sexual dimorphism. BMC Oral Health 23:37. https://doi.org/10.1186/s12903-023-02753-1

Article  PubMed  PubMed Central  Google Scholar 

Kantaputra P, Sripathomsawat W (2011) WNT10A and isolated hypodontia. Am J Med Genet A 155A:1119–1122. https://doi.org/10.1002/ajmg.a.33840

Article  CAS  PubMed  Google Scholar 

Kantaputra P, Jatooratthawichot P, Tantachamroon O et al (2023) Novel Dental Anomaly-associated Mutations in WNT10A Protein Binding Sites. Int Dent J 73:79–86. https://doi.org/10.1016/j.identj.2022.04.006

Article  PubMed  Google Scholar 

Keskin G, Karaer K, Uçar Gündoğar Z (2022) Targeted next-generation sequencing (NGS) analysis of mutations in nonsyndromic tooth agenesis candidate genes : Analysis of a Turkish cohort. J Orofac Orthop 83:65–74. https://doi.org/10.1007/s00056-021-00284-4

Article  PubMed  Google Scholar 

Kikuchi A, Yamamoto H, Sato A, Matsumoto S (2011) New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 291:21–71. https://doi.org/10.1016/B978-0-12-386035-4.00002-1

Article  CAS  PubMed  Google Scholar 

Kratochwil K, Galceran J, Tontsch S et al (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185. https://doi.org/10.1101/gad.1035602

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif