Evolution and global research trends of immunity in diabetic nephropathy: a bibliometric and visual analysis from 2004 to 2023

Reddy MA, Sumanth P, Lanting L, Yuan H, Wang M, Mar D, Alpers CE, Bomsztyk K, Natarajan R (2014) Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int 85:362–373. https://doi.org/10.1038/ki.2013.387

Article  CAS  PubMed  Google Scholar 

Kim H, Bae YU, Jeon JS, Noh H, Park HK, Byun DW, Han DC, Ryu S, Kwon SH (2019) The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med 17:236. https://doi.org/10.1186/s12967-019-1983-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae JH, Han KD, Ko SH, Yang YS, Choi JH, Choi KM, Kwon HS, Won KC (2022) Diabetes fact sheet in Korea 2021. Diabetes Metab J 46:417–426. https://doi.org/10.4093/dmj.2022.0106

Article  PubMed  PubMed Central  Google Scholar 

Yamada K, Takata T, Iyama T, Hamada S, Mae Y, Sugihara T, Isomoto H (2022) Fluorescence imaging using enzyme-activatable probes for detecting diabetic kidney disease and glomerular diseases. Int J Mol Sci. https://doi.org/10.3390/ijms23158150

Article  PubMed  PubMed Central  Google Scholar 

Li H, Lu W, Wang A, Jiang H, Lyu J (2021) Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: estimates from global burden of disease 2017. J Diabetes Investig 12:346–356. https://doi.org/10.1111/jdi.13355

Article  PubMed  Google Scholar 

Yang SK, Li AM, Han YC, Peng CH, Song N, Yang M, Zhan M, Zeng LF, Song PA, Zhang W et al (2019) Mitochondria-targeted peptide SS31 attenuates renal tubulointerstitial injury via inhibiting mitochondrial fission in diabetic mice. Oxid Med Cell Longev 2019:2346580. https://doi.org/10.1155/2019/2346580

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng J, Li X, Zhang D, Chen JK, Su Y, Smith SB, Dong Z (2015) Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int 87:137–150. https://doi.org/10.1038/ki.2014.226

Article  CAS  PubMed  Google Scholar 

Xu T, Xu X, Zhang L, Zhang K, Wei Q, Zhu L, Yu Y, Xiao L, Lin L, Qian W et al (2021) Lipidomics reveals serum specific lipid alterations in diabetic nephropathy. Front Endocrinol (Lausanne) 12:781417. https://doi.org/10.3389/fendo.2021.781417

Article  PubMed  Google Scholar 

Jiang ZH, Tang YZ, Song HN, Yang M, Li B, Ni CL (2020) miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int J Mol Med 45:45–52. https://doi.org/10.3892/ijmm.2019.4388

Article  CAS  PubMed  Google Scholar 

Hwang YC, Kim SW, Hur KY, Cha BS, Kim IJ, Park TS, Baik SH, Yoon KH, Lee KW, Lee IK et al (2019) Predictive factors for efficacy of AST-120 treatment in diabetic nephropathy: a prospective single-arm, open-label. Multi-Center Study J Korean Med Sci 34:e117. https://doi.org/10.3346/jkms.2019.34.e117

Article  CAS  PubMed  Google Scholar 

Htay H, Bello AK, Levin A, Lunney M, Osman MA, Ye F, Ashuntantang GE, Bellorin-Font E, Gharbi MB, Davison SN et al (2021) Hemodialysis use and practice patterns: an international survey study. Am J Kidney Dis 77:326-335.e321. https://doi.org/10.1053/j.ajkd.2020.05.030

Article  PubMed  Google Scholar 

Tannor EK, Hutton-Mensah K, Opare-Addo P, Agyei MK, Gyan KF, Inusah AJ, Nyann BI, Amo-Antwi K, Luyckx V, Okpechi I (2023) Fifty years of hemodialysis in Ghana-current status, utilization and cost of dialysis services. BMC Health Serv Res 23:1170. https://doi.org/10.1186/s12913-023-10154-x

Article  PubMed  PubMed Central  Google Scholar 

Ma T, Li X, Zhu Y, Yu S, Liu T, Zhang X, Chen D, Du S, Chen T, Chen S et al (2022) Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Front Immunol 13:835879. https://doi.org/10.3389/fimmu.2022.835879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao X, Chi H, Tang X, Xing J, Sheng X, Zhan W (2021) The functions of β-Defensin in flounder (Paralichthys olivaceus): antibiosis chemotaxis and modulation of phagocytosis. Biology (Basel). https://doi.org/10.3390/biology10121247

Article  PubMed  PubMed Central  Google Scholar 

Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, Welling PA, Waikar SS, Humphreys BD (2019) The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A 116:19619–19625. https://doi.org/10.1073/pnas.1908706116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J, Akat KM, Sun ZG, Zhang WJ, Schlondorff D, Liu ZH, Tuschl T, Lee K, He JC (2019) Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 30:533–545. https://doi.org/10.1681/asn.2018090896

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R (2019) Novel immunomodulatory cytokine regulates inflammation, diabetes, and obesity to protect from diabetic nephropathy. Front Pharmacol 10:11. https://doi.org/10.3389/fphar.2019.00572

Article  CAS  Google Scholar 

Navarro-Gonzalez JF, Mora-Fernandez C (2008) The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19:433–442. https://doi.org/10.1681/asn.2007091048

Article  CAS  PubMed  Google Scholar 

Duran-Salgado MB, Rubio-Guerra AF (2014) Diabetic nephropathy and inflammation. World J Diabetes 5:393–398. https://doi.org/10.4239/wjd.v5.i3.393

Article  PubMed  PubMed Central  Google Scholar 

Zheng ZH, Zheng F (2016) Immune cells and inflammation in diabetic nephropathy. J Diabetes Res 2016:10. https://doi.org/10.1155/2016/1841690

Article  CAS  Google Scholar 

Tesch GH (2017) Diabetic nephropathy – is this an immune disorder? Clin Sci 131:2183–2199. https://doi.org/10.1042/cs20160636

Article  CAS  Google Scholar 

Kong LY, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic-Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI (2022) Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 13:213–226. https://doi.org/10.1111/jdi.13725

Article  PubMed  Google Scholar 

Wada J, Makino H (2016) Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 12:13–26. https://doi.org/10.1038/nrneph.2015.175

Article  CAS  PubMed  Google Scholar 

Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG et al (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol 308:F993-f1003. https://doi.org/10.1152/ajprenal.00637.2014

Article  CAS  PubMed  Google Scholar 

Meshkani R, Vakili S (2016) Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta 462:77–89. https://doi.org/10.1016/j.cca.2016.08.015

Article  CAS  PubMed  Google Scholar 

Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH (2012) Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 35:164–174. https://doi.org/10.1159/000334928

Article  CAS  PubMed  Google Scholar 

Lu X, Li L, Suo L, Huang P, Wang H, Han S, Cao M (2022) Single-cell rna sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Front Cell Dev Biol 10:798316. https://doi.org/10.3389/fcell.2022.798316

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif