Reddy MA, Sumanth P, Lanting L, Yuan H, Wang M, Mar D, Alpers CE, Bomsztyk K, Natarajan R (2014) Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int 85:362–373. https://doi.org/10.1038/ki.2013.387
Article CAS PubMed Google Scholar
Kim H, Bae YU, Jeon JS, Noh H, Park HK, Byun DW, Han DC, Ryu S, Kwon SH (2019) The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med 17:236. https://doi.org/10.1186/s12967-019-1983-3
Article CAS PubMed PubMed Central Google Scholar
Bae JH, Han KD, Ko SH, Yang YS, Choi JH, Choi KM, Kwon HS, Won KC (2022) Diabetes fact sheet in Korea 2021. Diabetes Metab J 46:417–426. https://doi.org/10.4093/dmj.2022.0106
Article PubMed PubMed Central Google Scholar
Yamada K, Takata T, Iyama T, Hamada S, Mae Y, Sugihara T, Isomoto H (2022) Fluorescence imaging using enzyme-activatable probes for detecting diabetic kidney disease and glomerular diseases. Int J Mol Sci. https://doi.org/10.3390/ijms23158150
Article PubMed PubMed Central Google Scholar
Li H, Lu W, Wang A, Jiang H, Lyu J (2021) Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: estimates from global burden of disease 2017. J Diabetes Investig 12:346–356. https://doi.org/10.1111/jdi.13355
Yang SK, Li AM, Han YC, Peng CH, Song N, Yang M, Zhan M, Zeng LF, Song PA, Zhang W et al (2019) Mitochondria-targeted peptide SS31 attenuates renal tubulointerstitial injury via inhibiting mitochondrial fission in diabetic mice. Oxid Med Cell Longev 2019:2346580. https://doi.org/10.1155/2019/2346580
Article CAS PubMed PubMed Central Google Scholar
Peng J, Li X, Zhang D, Chen JK, Su Y, Smith SB, Dong Z (2015) Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int 87:137–150. https://doi.org/10.1038/ki.2014.226
Article CAS PubMed Google Scholar
Xu T, Xu X, Zhang L, Zhang K, Wei Q, Zhu L, Yu Y, Xiao L, Lin L, Qian W et al (2021) Lipidomics reveals serum specific lipid alterations in diabetic nephropathy. Front Endocrinol (Lausanne) 12:781417. https://doi.org/10.3389/fendo.2021.781417
Jiang ZH, Tang YZ, Song HN, Yang M, Li B, Ni CL (2020) miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int J Mol Med 45:45–52. https://doi.org/10.3892/ijmm.2019.4388
Article CAS PubMed Google Scholar
Hwang YC, Kim SW, Hur KY, Cha BS, Kim IJ, Park TS, Baik SH, Yoon KH, Lee KW, Lee IK et al (2019) Predictive factors for efficacy of AST-120 treatment in diabetic nephropathy: a prospective single-arm, open-label. Multi-Center Study J Korean Med Sci 34:e117. https://doi.org/10.3346/jkms.2019.34.e117
Article CAS PubMed Google Scholar
Htay H, Bello AK, Levin A, Lunney M, Osman MA, Ye F, Ashuntantang GE, Bellorin-Font E, Gharbi MB, Davison SN et al (2021) Hemodialysis use and practice patterns: an international survey study. Am J Kidney Dis 77:326-335.e321. https://doi.org/10.1053/j.ajkd.2020.05.030
Tannor EK, Hutton-Mensah K, Opare-Addo P, Agyei MK, Gyan KF, Inusah AJ, Nyann BI, Amo-Antwi K, Luyckx V, Okpechi I (2023) Fifty years of hemodialysis in Ghana-current status, utilization and cost of dialysis services. BMC Health Serv Res 23:1170. https://doi.org/10.1186/s12913-023-10154-x
Article PubMed PubMed Central Google Scholar
Ma T, Li X, Zhu Y, Yu S, Liu T, Zhang X, Chen D, Du S, Chen T, Chen S et al (2022) Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Front Immunol 13:835879. https://doi.org/10.3389/fimmu.2022.835879
Article CAS PubMed PubMed Central Google Scholar
Hao X, Chi H, Tang X, Xing J, Sheng X, Zhan W (2021) The functions of β-Defensin in flounder (Paralichthys olivaceus): antibiosis chemotaxis and modulation of phagocytosis. Biology (Basel). https://doi.org/10.3390/biology10121247
Article PubMed PubMed Central Google Scholar
Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, Welling PA, Waikar SS, Humphreys BD (2019) The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A 116:19619–19625. https://doi.org/10.1073/pnas.1908706116
Article CAS PubMed PubMed Central Google Scholar
Fu J, Akat KM, Sun ZG, Zhang WJ, Schlondorff D, Liu ZH, Tuschl T, Lee K, He JC (2019) Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 30:533–545. https://doi.org/10.1681/asn.2018090896
Article CAS PubMed PubMed Central Google Scholar
Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R (2019) Novel immunomodulatory cytokine regulates inflammation, diabetes, and obesity to protect from diabetic nephropathy. Front Pharmacol 10:11. https://doi.org/10.3389/fphar.2019.00572
Navarro-Gonzalez JF, Mora-Fernandez C (2008) The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19:433–442. https://doi.org/10.1681/asn.2007091048
Article CAS PubMed Google Scholar
Duran-Salgado MB, Rubio-Guerra AF (2014) Diabetic nephropathy and inflammation. World J Diabetes 5:393–398. https://doi.org/10.4239/wjd.v5.i3.393
Article PubMed PubMed Central Google Scholar
Zheng ZH, Zheng F (2016) Immune cells and inflammation in diabetic nephropathy. J Diabetes Res 2016:10. https://doi.org/10.1155/2016/1841690
Tesch GH (2017) Diabetic nephropathy – is this an immune disorder? Clin Sci 131:2183–2199. https://doi.org/10.1042/cs20160636
Kong LY, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic-Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI (2022) Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 13:213–226. https://doi.org/10.1111/jdi.13725
Wada J, Makino H (2016) Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 12:13–26. https://doi.org/10.1038/nrneph.2015.175
Article CAS PubMed Google Scholar
Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG et al (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol 308:F993-f1003. https://doi.org/10.1152/ajprenal.00637.2014
Article CAS PubMed Google Scholar
Meshkani R, Vakili S (2016) Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta 462:77–89. https://doi.org/10.1016/j.cca.2016.08.015
Article CAS PubMed Google Scholar
Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH (2012) Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 35:164–174. https://doi.org/10.1159/000334928
Article CAS PubMed Google Scholar
Lu X, Li L, Suo L, Huang P, Wang H, Han S, Cao M (2022) Single-cell rna sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Front Cell Dev Biol 10:798316. https://doi.org/10.3389/fcell.2022.798316
留言 (0)