Comparison of cat stone matrix and cat urine proteomes to human calcium oxalate stone matrix and urine proteomes

Wesson JA, Zenka R, Lulich J et al (2022) Comparison of cat and human calcium oxalate monohydrate kidney stone matrix proteomes. Urolithiasis 50:653–664. https://doi.org/10.1007/s00240-022-01363-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coe FL, Parks JH, Asplin JR (1992) The pathogenesis and treatment of kidney stones. N Engl J Med 327:1141–1152

Article  CAS  PubMed  Google Scholar 

Worcester EM (1996) Inhibitors of stone formation. [Review] [74 refs]. Sem Nephrol 16:474–486

CAS  Google Scholar 

Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

Article  CAS  PubMed  Google Scholar 

Wesson JA, Kolbach-Mandel AM, Hoffmann BR et al (2019) Selective protein enrichment in calcium oxalate stone matrix: a window to pathogenesis? Urolithiasis 47:521–532. https://doi.org/10.1007/s00240-019-01131-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witzmann FA, Evan AP, Coe FL et al (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci 14:4. https://doi.org/10.1186/s12953-016-0093-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canales BK, Anderson L, Higgins L et al (2010) Proteome of human calcium kidney stones. Urology 76:1017.e13-1017.e20. https://doi.org/10.1016/j.urology.2010.05.005

Article  PubMed  Google Scholar 

Merchant ML, Cummins TD, Wilkey DW et al (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Ren Physiol 295:F1254–F1258

Article  CAS  Google Scholar 

Aggarwal KP, Tandon S, Naik PK et al (2013) Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis. PLoS ONE Electron Resour 8:e69916. https://doi.org/10.1371/journal.pone.0069916

Article  CAS  Google Scholar 

Kaneko K, Kobayashi R, Yasuda M et al (2012) Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography-tandem mass spectrometry. Int J Urol 19:765–772. https://doi.org/10.1111/j.1442-2042.2012.03005.x

Article  CAS  PubMed  Google Scholar 

Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2017) The role of macromolecules in the formation of kidney stones. Urolithiasis 45:57–74. https://doi.org/10.1007/s00240-016-0948-8

Article  CAS  PubMed  Google Scholar 

Alford A, Furrow E, Borofsky M, Lulich J (2020) Animal models of naturally occurring stone disease. Nat Rev Urol 17:691–705. https://doi.org/10.1038/s41585-020-00387-4

Article  PubMed  PubMed Central  Google Scholar 

Lulich J (2016) Microanatomy of Feline Nephrolithiasis. In: American College of Veterinary Internal Medicine Forum (Denver, CO, 2016)

Kolbach-Mandel AM, Mandel NS, Hoffmann BR et al (2017) Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal. Urolithiasis 45:337–346. https://doi.org/10.1007/s00240-017-0969-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger GK, Eisenhauer J, Vallejos A et al (2021) Exploring mechanisms of protein influence on calcium oxalate kidney stone formation. Urolithiasis 49:281–290. https://doi.org/10.1007/s00240-021-01247-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

Article  CAS  PubMed  Google Scholar 

(2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100

Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. https://doi.org/10.1038/nature10098

Article  CAS  PubMed  Google Scholar 

Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18%3c3551::AID-ELPS3551%3e3.0.CO;2-2

Article  CAS  PubMed  Google Scholar 

Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10:1265–1269. https://doi.org/10.1002/pmic.200900437

Article  CAS  PubMed  Google Scholar 

Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658. https://doi.org/10.1021/ac0341261

Article  CAS  PubMed  Google Scholar 

Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421

Article  CAS  Google Scholar 

Bjellqvist B, Hughes GJ, Pasquali C et al (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031. https://doi.org/10.1002/elps.11501401163

Article  CAS  PubMed  Google Scholar 

Wesson JA, Ganne V, Beshensky AM, Kleinman JG (2005) Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res 33:206–212

Article  CAS  PubMed  Google Scholar 

Mueller E, Sikes CS (1993) Adsorption and modification of calcium salt crystal growth by anionic peptides and spermine. Calcif Tissue Int 52:34–41

Article  CAS  PubMed  Google Scholar 

Jung T, Sheng X, Choi CK et al (2004) Probing calcium oxalate monohydrate crystal growth and the role of macromolecular additives with in situ atomic force microscopy. Langmuir 20:8587–8596

Article  CAS  PubMed  Google Scholar 

Shiraga H, Min W, VanDusen WJ et al (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci U S A 89:426–430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian Y, Tirrell M, Davis C, Wesson JA (2021) Protein primary structure correlates with calcium oxalate stone matrix preference. PLoS ONE 16:e0257515. https://doi.org/10.1371/journal.pone.0257515

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grohe B, Chan BPH, Sørensen ES et al (2011) Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine. Urol Res 39:327–338. https://doi.org/10.1007/s00240-010-0360-8

Article  CAS  PubMed  Google Scholar 

Kumar V, Lieske JC (2006) Protein regulation of intrarenal crystallization. Curr Opin Nephrol Hypertens 15:374–380. https://doi.org/10.1097/01.mnh.0000232877.12599.f4

Article  CAS  PubMed  Google Scholar 

Anan G, Yoneyama T, Noro D et al (2019) The impact of glycosylation of osteopontin on urinary stone formation. Int J Mol Sci.

留言 (0)

沒有登入
gif