Cosio FG, Lopez-Gil M, Goicolea A, Arribas F, Barroso JL. Radiofrequency ablation of the inferior vena cava-tricuspid valve isthmus in common atrial flutter. Am J Cardiol. 1993;71(8):705–9.
Article CAS PubMed Google Scholar
Wellens HJ. Catheter ablation for cardiac arrhythmias. N Engl J Med. 2004;351(12):1172–4.
Article CAS PubMed Google Scholar
Filgueiras-Rama D, Arceluz M, Castrejon S, et al. What is behind radiofrequency delivery at the cavo-tricuspid isthmus? Arch Cardiol Mex. 2014;84(1):51–2.
Cabrera JA, Sanchez-Quintana D, Farre J, Rubio JM, Ho SY. The inferior right atrial isthmus: further architectural insights for current and coming ablation technologies. J Cardiovasc Electrophysiol. 2005;16(4):402–8.
Waki K, Saito T, Becker AE. Right atrial flutter isthmus revisited: normal anatomy favors nonuniform anisotropic conduction. J Cardiovasc Electrophysiol. 2000;11(1):90–4.
Article CAS PubMed Google Scholar
Klimek-Piotrowska W, Holda MK, Koziej M, et al. Clinical anatomy of the Cavotricuspid Isthmus and Terminal Crest. PLoS ONE. 2016;11(9):e163383.
Saremi F, Pourzand L, Krishnan S, et al. Right atrial cavotricuspid isthmus: anatomic characterization with multi-detector row CT. Radiology. 2008;247(3):658–68.
Redfearn DP, Skanes AC, Gula LJ, Krahn AD, Yee R, Klein GJ. Cavotricuspid isthmus conduction is dependent on underlying anatomic bundle architecture: observations using a maximum voltage-guided ablation technique. J Cardiovasc Electrophysiol. 2006;17(8):832–8.
Posan E, Redfearn DP, Gula LJ, et al. Elimination of cavotricuspid isthmus conduction by a single ablation lesion: observations from a maximum voltage-guided ablation technique. Europace. 2007;9(4):208–11.
Xue Y, Liu Y, Liao H, et al. Evaluation of electrophysiological mechanisms of post-surgical atrial tachycardias using an automated Ultra-high-density Mapping System. JACC: Clin Electrophysiol. 2018;4(11):1460–70.
Sau Arunashis S, Markus B, Luther Vishal, et al. The sawtooth EKG pattern of typical atrial flutter is not related to slow conduction velocity at the cavotricuspid isthmus. J Cardiovasc Electrophysiol. 2017;28:1445–53.
Article CAS PubMed Google Scholar
Pathik Bhupesh L, Geoffrey S, Frédéric, et al. New insights into an old arrhythmia: high-resolution mapping demonstrates conduction and substrate variability in right atrial macro-re-entrant tachycardia. JACC Clin Electrophysiol. 2017;3:971–86.
Article CAS PubMed Google Scholar
Laţcu DGM, Saoudi NM. Typical flutter rewritten: from textbooks to Ultra-high-definition Mapping. JACC: Clin Electrophysiol. 2017;3(9):987–90.
Kirkorian G, Moncada E, Chevalier P, et al. Radiofrequency ablation of atrial flutter. Efficacy Anatomically Guided Approach Circulation. 1994;90:2804–14.
Takahashi A, Shah DC, Jaïs P, Haïssaguerre M. How to ablate typical atrial flutter. Europace (London England). 1999;1(3):151–5.
Maruyama M, Kobayashi Y, Miyauchi Y, et al. Mapping-guided ablation of the cavotricuspid isthmus: a novel simplified approach to radiofrequency catheter ablation of isthmus-dependent atrial flutter. Heart Rhythm. 2006;3(6):665–73.
Chang SL, Tai CT, Lin YJ, et al. The electroanatomic characteristics of the cavotricuspid isthmus: implications for the catheter ablation of atrial flutter. J Cardiovasc Electrophysiol. 2007;18(1):18–22.
Gami AS, Edwards WD, Lachman N, et al. Electrophysiological anatomy of typical atrial flutter: the posterior boundary and causes for difficulty with ablation. J Cardiovasc Electrophysiol. 2010;21(2):144–9.
Scaglione M, Caponi D, Di Donna P, et al. Typical atrial flutter ablation outcome: correlation with isthmus anatomy using intracardiac echo 3D reconstruction. Europace. 2004;6(5):407–17.
留言 (0)