Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143
Article CAS PubMed Google Scholar
Kwon YH, Fingert JH, Kuehn MH, Alward WL (2009) Primary open-angle glaucoma. N Engl J Med 12(360):1113–1124
Schweitzer C (2018) Syndrome pseudo-exfoliatif et glaucome exfoliatif. J Fr Ophtalmol 41:78–90
Article CAS PubMed Google Scholar
Tomczyk-Socha M, Tomczak W, Winkler-Lach W, Turno-Kręcicka A (2023) Pseudoexfoliation syndrome-clinical characteristics of most common cause of secondary glaucoma. J Clin Med 21(12):3580
Rao V, Doctor M, Rao G (2015) Prevalence and prognosis of pseudoexfoliation glaucoma in western India. Asia Pac J Ophthalmol (Phila) 4:121–127
Fechtner RD, Weinreb RN (1994) Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 39:23–42
Article CAS PubMed Google Scholar
Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73
Park SC (2013) In vivo evaluation of lamina cribrosa deformation in glaucoma. J Glaucoma 22:S29-31
Won HJ, Sung KR, Shin JW, Jo YH, Song MK (2021) Comparison of lamina cribrosa curvature in pseudoexfoliation and primary open-angle glaucoma. Am J Ophthalmol 223:1–8
Kim YW, Jeoung JW, Kim DW, Girard MJ, Mari JM, Park KH, Kim DM (2016) Clinical assessment of lamina cribrosa curvature in eyes with primary open-angle glaucoma. PLoS ONE 10(11):0150260
Ersöz MG, Kunak Mart D, Hazar L, Ayıntap E, Botan Güneş İ, Konya HÖ (2018) Evaluation of prelaminar region and lamina cribrosa with enhanced depth imaging optical coherence tomography in pseudoexfoliation glaucoma. Turk J Ophthalmol 48:109–114
Article PubMed PubMed Central Google Scholar
Kim YW, Jeoung JW, Girard MJ, Mari JM, Park KH (2016) Positional and curvature difference of lamina cribrosa according to the baseline intraocular pressure in primary open-angle glaucoma: a swept-source optical coherence tomography (SS-OCT) study. PLoS ONE 9(11):e0162182
Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF (2011) Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci 9(52):7109–7121
Braunsmann C, Hammer CM, Rheinlaender J, Kruse FE, Schäffer TE, Schlötzer-Schrehardt U (2012) Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest Ophthalmol Vis Sci 17(53):2960–2967
Kim S, Sung KR, Lee JR, Lee KS (2013) Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Ophthalmology 120:1798–1803
Kagemann L, Ishikawa H, Wollstein G, Brennen PM, Townsend KA, Gabriele ML, Schuman JS (2008) Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa. Ophthalmic Surg Lasers Imaging 39:S126-131
Article PubMed PubMed Central Google Scholar
Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM (2011) Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 152:87-95.e1
Anderson DR (1969) Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol 82:800–814
Article CAS PubMed Google Scholar
Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 44:623–637
Park SC, Ritch R (2011) High resolution in vivo imaging of the lamina cribrosa. Saudi J Ophthalmol 25:363–372
Article PubMed PubMed Central Google Scholar
Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, Kagemann L, Sigal IA, Grulkowski I, Liu JJ, Kraus M, Lu CD, Hornegger J, Fujimoto JG, Schuman JS (2013) In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci 19(54):8270–8274
Furlanetto RL, Park SC, Damle UJ, Sieminski SF, Kung Y, Siegal N, Liebmann JM, Ritch R (2013) Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci 18(54):4836–4842
Li L, Bian AL, Cheng GW, Zhou Q (2016) Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography. Zhonghua Yan Ke Za Zhi 11(52):422–428
Netland PA, Ye H, Streeten BW, Hernandez MR (1995) Elastosis of the lamina cribrosa in pseudoexfoliation syndrome with glaucoma. Ophthalmology 102:878–886
Article CAS PubMed Google Scholar
Moghimi S, Mazloumi M, Johari M, Abdi P, Fakhraie G, Mohammadi M, Zarei R, Eslami Y, Fard MA, Lin SC (2016) Evaluation of lamina cribrosa and choroid in nonglaucomatous patients with pseudoexfoliation syndrome using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:1293–1300
Ritch R, Schlötzer-Schrehardt U, Konstas AG (2003) Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res 22:253–275
Schuman JS, Wollstein G, Farra T, Hertzmark E, Aydin A, Fujimoto JG, Paunescu LA (2003) Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol 135:504–512
Korkmaz B, Yiğit U, Ağaçhan A, Helvacıoğlu F, Bilen H, Tuğcu B (2010) The evaluation of the relationship between retinal nerve fiber layer and ganglion cell complex in glaucomatous and normal cases with optikal coherence tomography. Turk J Ophthalmol 40:338–342
Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 45:1716–1724
Forooghian F, Cukras C, Meyerle CB, Chew EY, Wong WT (2008) Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 49:4290–4296
Patel N, Chowdhury H, Leung R, Sivaprasad S (2013) Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diabetic macular edema. Indian J Ophthalmol 61:208–212
Article PubMed PubMed Central Google Scholar
Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400
Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46
Parikh RS, Parikh SR, Thomas R (2010) Diagnostic capability of macular parameters of stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol 94:197–201
留言 (0)