Huo Y, Ji S, Yang H et al (2022) Differential expression of microRNA in the serum of patients with polycystic ovary syndrome with insulin resistance. Ann Transl Med 10:762–762. https://doi.org/10.21037/ATM-22-2941
Article CAS PubMed PubMed Central Google Scholar
AE Butler, V Ramachandran, S Hayat, SR Dargham, TK Cunningham, M Benurwar, T Sathyapalan, SH Najafi-Shoushtari, SL Atkin (2019) Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep 9. https://doi.org/10.1038/S41598-019-52856-5.
Q Shen, M Chen, X Zhao, Y Liu, … XR-S (2020) biology in, undefined 2020, Versican expression level in cumulus cells is associated with human oocyte developmental competence, Taylor Fr. Shen, M Chen, X Zhao, Y Liu, X Ren, L ZhangSystems Biol Reprod Med 2020 Taylor Fr. 66:176–184. https://doi.org/10.1080/19396368.2020.1725685
G Rashid, NA Khan, D Elsori, RA Youness, H Hassan, D Siwan, N Seth, MA Kamal, S Rizvi, AM Babker, W Hafez (2024) miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 1–17. https://doi.org/10.1007/S00404-024-07379-4/METRICS
Chen HX, Fu YF, Guo ZX, Zhou XD (2022) MicroRNA-29c-3p participates in insulin function to modulate polycystic ovary syndrome via targeting Forkhead box O 3. Bioengineered 13:4361–4371. https://doi.org/10.1080/21655979.2022.2033014
Article CAS PubMed PubMed Central Google Scholar
Butler AE, Ramachandran V, Hayat S et al (2019) Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-52856-5
L Mu, X Sun, M Tu, D Zhang (2021) Non-coding RNAs in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 19. https://doi.org/10.1186/S12958-020-00687-9
Bhandary P, Shetty PK, Manjeera L, Patil P (2022) Hormonal, genetic, epigenetic and environmental aspects of polycystic ovarian syndrome. Gene Reports 29:101698. https://doi.org/10.1016/J.GENREP.2022.101698
Y Xuan Wu, Y Shan Lin, S Chen Li, X Yao, M Cheng, L Zhu, H Ying Liu (2021) microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induces KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod Biol Endocrinol 19. https://doi.org/10.1186/S12958-021-00850-W
Alexandri C, Daniel A, Bruylants G, Demeestere I (2020) The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update 26:174–196. https://doi.org/10.1093/HUMUPD/DMZ039
Article CAS PubMed Google Scholar
Turathum B, Gao E-M, Chian R-C, Jessus C (2021) The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Mdpi Com. https://doi.org/10.3390/cells10092292
Chang L, Xia J (2023) MicroRNA regulatory network analysis using miRNet 2.0. Methods Mol Biol 2594:185–204. https://doi.org/10.1007/978-1-0716-2815-7_14
Article CAS PubMed Google Scholar
Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/NAR/GKY1131
Article CAS PubMed Google Scholar
Zhou F, Xing Y, Cheng T et al (2022) Exploration of hub genes involved in PCOS using biological informatics methods. Med (United States) 101:E30905. https://doi.org/10.1097/MD.0000000000030905
Clarke DJB, Kuleshov MV, Schilder BM et al (2018) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signalling networks. Nucleic Acids Res 46:W171–W179. https://doi.org/10.1093/NAR/GKY458
Article CAS PubMed PubMed Central Google Scholar
Sherman BT, Hao M, Qiu J et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50:W216–W221. https://doi.org/10.1093/NAR/GKAC194
Article CAS PubMed PubMed Central Google Scholar
Cannon M, Stevenson J, Stahl K et al (2024) DGIdb 50: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res 52:D1227–D1235. https://doi.org/10.1093/NAR/GKAD1040
R Li, Y Yu, SO Jaafar, B Baghchi, M Farsimadan, I Arabipour, H Vaziri (2022) Genetic variants miR-126, miR-146a, miR-196a2, and miR-499 in polycystic ovary syndrome. Br J Biomed Sci 79. https://doi.org/10.3389/BJBS.2021.10209/FULL
Sepahi N, Kohan L, Jahromi AR et al (2017) mir-126 rs4636297 and TGFβRI rs334348 functional gene variants are associated with susceptibility to endometriosis and its severity. Gynecol Endocrinol 33:429–432. https://doi.org/10.1080/09513590.2017.1290064
Article CAS PubMed Google Scholar
X Jiang, J Li, B Zhang, J Hu, J Ma, L Cui, ZC-F and sterility, undefined 2021, Differential expression profile of plasma exosomal microRNAs in women with polycystic ovary syndrome, Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S0015028220307731 (accessed March 30, 2024)
Li C, Chen Y, Chen X et al (2020) MicroRNA-183-5p is stress-inducible and protects neurons against cell death in amyotrophic lateral sclerosis. J Cell Mol Med 24:8614–8622. https://doi.org/10.1111/JCMM.15490
Article CAS PubMed PubMed Central Google Scholar
I Ischenko, M Rao, J Li, MJ Hayman, S Powers, O Petrenko, NC Reich (n.d.) KRAS drives immune evasion in a genetic model of pancreatic cancer, Nature.ComI Ischenko, S D’Amico, M Rao, J Li, MJ Hayman, S Powers, O Petrenko, NC ReichNature Commun. 2021•nature.Com. https://doi.org/10.1038/s41467-021-21736-w
ABMMK Islam, E Mohammad, MAAK Khan (2020) Aberration of the modulatory functions of intronic microRNA hsa-miR-933 on its host gene ATF2 results in type II diabetes mellitus and neurodegenerative disease development, Hum. Genomics. 14. https://doi.org/10.1186/S40246-020-00285-1
Qin Y, Wang Y, Zhao H et al (2021) Aberrant miRNA-mRNA regulatory network in polycystic ovary syndrome is associated with markers of insulin sensitivity and inflammation. Ann Transl Med 9:1405–1405. https://doi.org/10.21037/ATM-21-1288
Article CAS PubMed PubMed Central Google Scholar
Y Yang, YC-S in cancer biology, undefined 2022, The impact of VEGF on cancer metastasis and systemic disease, Elsevier Yang, Y CaoSeminars Cancer Biol. 2022•Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S1044579X22000670 (accessed April 1, 2024)
A White (2023) GB- Biomolecules, undefined 2023, VEGFA isoforms as pro-angiogenic therapeutics for cerebrovascular diseases, Mdpi.Comal White, GJ BixBiomolecules, 2023•mdpi.Com. https://doi.org/10.3390/biom13040702
M Huang, Y Ji, J Chen, D Li, T Zhou, … PQ-AP, undefined 2023, Targeted VEGFA therapy in regulating early acute kidney injury and late fibrosis, Nature.ComM Huang, Y Ji, J Chen, D Li, T Zhou, P Qi, X Wang, X Li, Y Zhang, X Yu, L Wu, X Sun, G CaiActa Pharmacol. Sin. 2023•nature.Com. (n.d.). https://www.nature.com/articles/s41401-023-01070-1 (accessed August 10, 2024)
Wan R, Feng J, Tang L (2021) Consequences of mutations and abnormal expression of smad4 in tumours and t cells. Onco Targets Ther 14:2531–2540. https://doi.org/10.2147/OTT.S297855
Article PubMed PubMed Central Google Scholar
Y Zhou, Y Wu, C Chong, S Zhong, ZW- Heliyon, undefined 2023, Irpex lacteus polysaccharide exhibits therapeutic potential for ovarian fibrosis in PCOS rats via the TGF-β1/smad pathway, Cell.ComYY Zhou, YQ Wu, CJ Chong, SM Zhong, ZX Wang, XH Qin, ZQ Liu, JY Liu, JL SongHeliyon, 2023•cell.Com. (n.d.). https://www.cell.com/heliyon/pdf/S2405-8440(23)05949-2.pdf (accessed April 1, 2024)
YH Kim, SW Choe, MY Chae, S Hong, SP Oh (2018) SMAD4 deficiency leads to development of arteriovenous malformations in neonatal and adult mice. J Am Heart Assoc 7. https://doi.org/10.1161/JAHA.118.009514
MA Moga, A Bălan, OG Dimienescu, V Burtea, RM Dragomir, CV Anastasiu (2019) Circulating miRNAs as biomarkers for endometriosis and endometriosis-related ovarian cancer—an overview. J Clin Med 8. https://doi.org/10.3390/JCM8050735
S Elsherif, S Faria, C Lall, … RI-J of computer, undefined 2019, Ovarian cancer genetics and implications for imaging and therapy, Journals.Lww.ComSB Elsherif, SC Faria, C Lall, R Iyer, PR BhosaleJournal Comput. Assist. Tomogr. 2019•journals.Lww.Com. (n.d.). https://journals.lww.com/jcat/fulltext/2019/11000/Ovarian_Cancer_Genetics_and_Implications_for.2.aspx (accessed April 1, 2024)
Yan MQ, Zhu BH, Liu XH et al (2023) Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis 14:1–12. https://doi.org/10.1038/s41419-023-06312-y
A Alwhaibi, A Verma, M Adil, PS-P research, undefined 2019, The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis, ElsevierA Alwhaibi, A Verma, MS Adil, PR SomanathPharmacological Res. 2019•Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S1043661818318991 (accessed April 1, 2024)
Chen J, Somanath PR, Razorenova O et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11:1188–1196. https://doi.org/10.1038/nm1307
Article CAS PubMed PubMed Central Google Scholar
T Schaefer, CL- Oncogene, undefined 2020, SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond, Nature.ComT Schaefer, C LengerkeOncogene, 2020•nature.Com. (n.d.). https://www.nature.com/articles/s41388-019-0997-x (accessed April 1, 2024)
G Maurizi, N Verma, A Gadi, A Mansukhani, CB- Oncogene, undefined 2018, Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma, Nature.ComG Maurizi, N Verma, A Gadi, A Mansukhani, C BasilicoOncogene, 2018•nature.Com. (n.d.). https://www.nature.com/articles/s41388-018-0292-2 (accessed August 10, 2024)
D Yuan, J Luo, Y Sun, L Hao, J Zheng, ZY-C Signalling, undefined 2021, PCOS follicular fluid derived exosomal miR-424–5p induces granulosa cells senescence by targeting CDCA4 expression, ElsevierD Yuan, J Luo, Y Sun, L Hao, J Zheng, Z YangCellular Signalling, 2021•Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S0898656821001194 (accessed April 20, 2024)
JG- Reproduction, undefined 2015, The role of WNT signaling in adult ovarian folliculogenesis, Rep.Bioscientifica.ComJAH GiffordReproduction, 2015•rep.Bioscientifica.Com. (n.d.). https://rep.bioscientifica.com/view/journals/rep/150/4/R137.xml (accessed April 29, 2024)
Zhu M, Fan Z (2022) The role of the Wnt signalling pathway in the energy metabolism of bone remodelling. Cell Prolif 55:e13309. https://doi.org/10.1111/CPR.13309
Article CAS PubMed PubMed Central Google Scholar
O Habara, C Logan, … MK-A-, undefined 2021, WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility, Journals.Biologists.ComO Habar. CY Logan, M Kanai-Azuma, R Nusse, HM Tak. 2021•journals.Biologists.Com. (n.d.). https://journals.biologists.com/dev/article-abstract/148/9/dev198846/261700 (accessed September 13, 2023)
L Li, X Shi, Y Shi, Z Wang (2021) The signaling pathways involved in ovarian follicle development. Front Physiol 12. https://doi.org/10.3389/FPHYS.2021.730196/FULL
留言 (0)