Deep Learning based CT-scan Coronary Artery Segmentation and Calcium Scoring

Abstract

Coronary artery disease (CAD), primarily driven by atherosclerosis, poses significant health risks, contributing to a rising mortality rate globally. This study introduces a deep learning framework designed for the automated segmentation of coronary arteries and quantification of coronary artery calcium (CAC) from CT scans, facilitating improved risk stratification in patients. Leveraging data from the National Lung Screening Trial, we developed a three-step model that includes heart localization, coronary calcium segmentation, and calcium scoring. Various configurations of the UNet architecture were employed, with the Extended UNet utilizing an autoencoder achieving the highest validation performance, reflected by an Intersection over Union (IoU) score of 0.78 and an F1 score of 0.83. The model's efficacy was validated against manually segmented masks, showcasing its potential for accurate risk assessment based on CAC scores. This automated approach significantly reduces the time and expertise required for traditional calcium scoring, enabling rapid and reliable assessments in clinical settings. Our findings indicate that the deep learning system can effectively classify patients into risk categories, underscoring its potential utility in enhancing the management of CAD and improving patient outcomes. This research highlights the feasibility of integrating advanced computational techniques into routine clinical practice, paving the way for more efficient cardiovascular risk stratification.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Source data was available publicly before the initiation of this study. https://cdas.cancer.gov/datasets/nlst/

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

留言 (0)

沒有登入
gif