The Effect of Electronic Halos on the Scattering Properties of Solid Particles in the Microwave Range

L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70 (10), 1633 (2007).

Article  ADS  Google Scholar 

V. A. Donchenko, S. F. Balandin, B. Zh. Kemel’bekov, V. F. Myshkin, and V. A. Khan, “Physical principles of creation of ionization channels in the atmosphere under CW and pulsed laser irradiation,” Russ. Phys. J. 61 (5), 918–929 (2018).

Article  Google Scholar 

V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, “Control of extended high-voltage electric discharges in atmospheric air by UV KrF-laser radiation,” Quantum Electron. 41 (3), 227–233 (2011).

Article  ADS  Google Scholar 

F. Theberge, J. F. Gravel, J. C. Kieffer, F. Vidal, and M. Chateauneuf, “Broadband and long lifetime plasma-antenna in air initiated by laser-guided discharge,” Appl. Phys. Lett. 111 (7), 073501 (2017).

Article  ADS  Google Scholar 

R. J. Lanzafame, “Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale, by Jean-Claude Diels and Wolfgang Rudolph,” Photomed. Laser Therapy 25 (1), 58–58 (2007).

Article  Google Scholar 

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, “White-light filaments for atmospheric analysis,” Science 301 (5629), 61–64 (2003).

Article  ADS  Google Scholar 

J. P. Rayner, A. P. Whichello, and A. D. Cheetham, “Physical characteristics of plasma antennas,” IEEE Trans. Plasma Sci. 32 (1), 269–281 (2004).

Article  ADS  Google Scholar 

Yu. P. Raizer, Laser Spark and Discharge Propagation (Nauka, Moscow, 1974) [in Russian].

Google Scholar 

Yu. P. Raizer, “Optical discharges,” Sov. Phys. Usp. 23, 789–806 (1980).

Article  ADS  Google Scholar 

Yu. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

Google Scholar 

P. J. Singletary and M. B. Cohen, “Using a high-speed plasma as a conducting channel to enable a novel antenna approach,” IEEE Trans. Plasma Sci. 49 (2), 794–804 (2021).

Article  ADS  Google Scholar 

L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1960) [in Russian].

Google Scholar 

S. Ya. Pshezhetskii and M. T. Dmitriev, Physical-Chemical Radiation Processes in Atmospheric Air (Atomizdat, Moscow, 1978) [in Russian].

Google Scholar 

R. R. Letfullin, “Solid aerosols in high-intensity laser beams,” Vestn. Samarskogo Gos. Tekhnich. Univ. Ser. Fiz.-Mat. Nauki, No. 4, 243–263 (1996).

Google Scholar 

S. F. Balandin, V. A. Donchenko, Al. A. Zemlyanov, V. F. Myshkin, V. A. Khan, and E. S. Abramova, “Electrical parameters of a laser beam channel in the atmosphere. I,” Russ. Phys. J. 62 (4), 576–580 (2019).

Article  Google Scholar 

E. S. Abramova, S. F. Balandin, V. A. Donchenko, V. F. Myshkin, A. I. Potekaev, and V. A. Khan, “Lower-threshold ionization in laser channel propagation,” Russ. Phys. J. 63 (2), 338–343 (2020).

Article  Google Scholar 

I. I. Fairushin, Mathematical Models of Low-Temperature Plasma. Part 1. Simulation of Processes in Equilibrium Dust Plasma (Kazan, 2014) [in Russian].

Yu. P. Raizer, Gas Discharge Physics (Nauka, Fizmatlit, Moscow, 1987) [in Russian].

V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Atmospheric Optics (Gidrometeoizdat, Leningrad, 1989) [in Russian].

Google Scholar 

G. N. Aleksandrov, “Mechanism of spark discharge from a negatively charged point. Lightning discharge,” Zh. Tekh. Fiz. 37 (2), 288–293 (1967).

Google Scholar 

M. Mitchner and Ch. H. Kruger, Jr, Partially Ionized Gases (Wiley, 1973).

Google Scholar 

留言 (0)

沒有登入
gif