Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives

Data Sharing Statement

The data presented in this study are available in this article.

Funding

This research was funded by grants from the National Natural Science Foundation of China (No. 81703584), The regional joint fund of natural science foundation of Guangdong province (No. 2020B1515120052), Guangdong Province Natural Science Foundation of China (No. 2022A1515220166, 2023A1515011091, and 2021A1515010975), Discipline construction project of Guangdong Medical University (No. 4SG23002G, and CLP2021B012), the Science and Technology Foundation of Zhanjiang (No. 2022A01099, 2022A01163, 2022A01170), the Discipline Construction Fund of Central People’s Hospital of Zhanjiang (No. 2022A09), Special Funds for Scientific Technological Innovation of Undergraduates in Guangdong Province (No. pdjh2022a0214), Guangdong medical university research fund (No. FZZM05, FYZM001).

Disclosure

Min Zhang, Man Mi, and Zilong Hu are co-first authors for this study. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Wang C, Bai J, Liu Y, Jia X, Jiang X. Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater Sci Eng. 2016;2(11):2011–2017. doi:10.1021/acsbiomaterials.6b00416

2. Hao M, Kong C, Jiang C, et al. Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways. Acta Biomater. 2019;83:414–424. doi:10.1016/j.actbio.2018.10.032

3. Wu Q, Niu M, Chen X, et al. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials. 2018;162:132–143. doi:10.1016/j.biomaterials.2018.02.022

4. Lin LS, Cong ZX, Cao JB, et al. Multifunctional Fe₃O₄@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS nano. 2014;8(4):3876–3883. doi:10.1021/nn500722y

5. Sharma V, Chowdhury S, Bose S, Basu B. Polydopamine Codoped BaTiO(3)-Functionalized polyvinylidene fluoride coating as a piezo-biomaterial platform for an enhanced cellular response and bioactivity. ACS Biomater Sci Eng. 2022;8(1):170–184. doi:10.1021/acsbiomaterials.1c00879

6. Cheng W, Zeng X, Chen H, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS nano. 2019;13(8):8537–8565. doi:10.1021/acsnano.9b04436

7. Deng Z, Shang B, Peng B. Polydopamine based colloidal materials: synthesis and applications. Chem Rec. 2018;18(4):410–432. doi:10.1002/tcr.201700051

8. Alfieri ML, Panzella L, Oscurato SL, et al. The chemistry of polydopamine film formation: the amine-quinone interplay. Biomimetics. 2018;3(3). doi:10.3390/biomimetics3030026

9. García-Mayorga JC, Rosu HC, Jasso-Salcedo AB, Escobar-Barrios VA. Kinetic study of polydopamine sphere synthesis using TRIS: relationship between synthesis conditions and final properties. RSC Adv. 2023;13(8):5081–5095. doi:10.1039/d2ra06669f

10. Tan L, Zhu T, Huang Y, et al. Ozone-induced rapid and green synthesis of polydopamine coatings with high uniformity and enhanced stability. Adv Sci. 2024;11(10):e2308153. doi:10.1002/advs.202308153

11. Hemmatpour H, De Luca O, Crestani D, et al. New insights in polydopamine formation via surface adsorption. Nature Communic. 2023;14(1):664. doi:10.1038/s41467-023-36303-8

12. Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces. 2018;10(9):7523–7540. doi:10.1021/acsami.7b19865

13. Chinchulkar SA, Patra P, Dehariya D, Yu A, Rengan AK. Polydopamine nanocomposites and their biomedical applications: a review. Polym Adv Technol. 2022;33(12):3935–3956. doi:10.1002/pat.5863

14. Alfieri ML, Weil T, Ng DYW, Ball V. Polydopamine at biological interfaces. Adv Colloid Interface Sci. 2022;305:102689. doi:10.1016/j.cis.2022.102689

15. Han X, Gao W, Zhou Z, et al. Curcumin-loaded mesoporous polydopamine nanoparticles modified by quaternized chitosan against bacterial infection through synergistic effect. Int J Biol Macromol. 2024;267:131372. doi:10.1016/j.ijbiomac.2024.131372

16. Hu J, Ding Y, Tao B, et al. Surface modification of titanium substrate via combining photothermal therapy and quorum-sensing-inhibition strategy for improving osseointegration and treating biofilm-associated bacterial infection. Bioact. Mater. 2022;18:228–241. doi:10.1016/j.bioactmat.2022.03.011

17. Li F, Yu Y, Wang Q, Yuan J, Wang P, Fan X. Polymerization of dopamine catalyzed by laccase: comparison of enzymatic and conventional methods. Enzyme Microb Technol. 2018;119:58–64. doi:10.1016/j.enzmictec.2018.09.003

18. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30. doi:10.1126/science.1147241

19. Cihanoğlu A, Schiffman JD, Altinkaya SA. Ultrasound-assisted dopamine polymerization: rapid and oxidizing agent-free polydopamine coatings on membrane surfaces. Chem Commun. 2021;57(100):13740–13743. doi:10.1039/d1cc05960b

20. Zhou X, Gao S, Huang D, et al. Bioinspired, ultra-fast polymerization of dopamine under mild conditions. Macromol Rapid Commun. 2022;43(23):e2200581. doi:10.1002/marc.202200581

21. Tan Y, Deng W, Li Y, et al. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. J Phys Chem A. 2010;114(15):5016–5024. doi:10.1021/jp100922t

22. Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B. 2021;199:111502. doi:10.1016/j.colsurfb.2020.111502

23. Hu H, Dyke JC, Bowman BA, Ko CC, You W. Investigation of dopamine analogues: synthesis, mechanistic understanding, and structure-property relationship. Langmuir. 2016;32(38):9873–9882. doi:10.1021/acs.langmuir.6b02141

24. Liu G, Ma M, Yang H, et al. Chitosan/polydopamine/octacalcium phosphate composite microcarrier simulates natural bone components to induce osteogenic differentiation of stem cells. Biomater Adv. 2023;154:213642. doi:10.1016/j.bioadv.2023.213642

25. Tan L, Tang W, Liu T, et al. Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo. ACS Appl Mater Interfaces. 2016;8(18):11237–11245. doi:10.1021/acsami.5b12329

26. Treccani L, Yvonne Klein T, Meder F, Pardun K, Rezwan K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 2013;9(7):7115–7150. doi:10.1016/j.actbio.2013.03.036

27. Cho S, Park W, Kim DH. Silica-coated metal chelating-melanin nanoparticles as a dual-modal contrast enhancement imaging and therapeutic agent. ACS Appl Mater Interfaces. 2017;9(1):101–111. doi:10.1021/acsami.6b11304

28. Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model. Int J Pharm. 2016;497(1–2):228–238. doi:10.1016/j.ijpharm.2015.11.040

29. Ho CC, Ding SJ. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci Mater Med. 2013;24(10):2381–2390. doi:10.1007/s10856-013-4994-2

30. Mei S, Kochovski Z, Roa R, et al. Enhanced catalytic activity of Gold@Polydopamine nanoreactors with multi-compartment structure under NIR irradiation. Nanomicro Lett. 2019;11(1):83. doi:10.1007/s40820-019-0314-9

31. Khan MZH, Daizy M, Tarafder C, Liu X. Au-PDA@SiO(2) core-shell nanospheres decorated rGO modified electrode for electrochemical sensing of cefotaxime. Sci Rep. 2019;9(1):19041. doi:10.1038/s41598-019-55517-9

32. Zhang Y, Zhao Z, Li D, et al. In situ growth of MnO2 on pDA-templated cotton fabric for degradation of formaldehyde. Cellulose. 2022;29(13):7353–7363. doi:10.1007/s10570-022-04734-z

33. Behzadinasab S, Williams MD, Hosseini M, et al. Transparent and sprayable surface coatings that kill drug-resistant bacteria within minutes and inactivate SARS-CoV-2 virus. ACS Appl Mater Interfaces. 2021;13(46):54706–54714. doi:10.1021/acsami.1c15505

34. Zhang Z, Si T, Liu J, Zhou G. In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS carbaryl pesticides detection. Nanomaterials. 2019;9(3). doi:10.3390/nano9030384

35. Liu G, Lu Z, Zhu X, et al. Facile in-situ growth of Ag/TiO(2) nanoparticles on polydopamine modified bamboo with excellent mildew-proofing. Sci Rep. 2019;9(1):16496. doi:10.1038/s41598-019-53001-y

36. Xie C, Li P, Han L, et al. Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Materials. 2017;9(3):e358–e358. doi:10.1038/am.2017.16

37. Tran HQ, Bhave M, Xu G, Sun C, Yu A. Synthesis of polydopamine hollow capsules via a polydopamine mediated silica water dissolution process and its application for enzyme encapsulation. Front Chem. 2019;7:468. doi:10.3389/fchem.2019.00468

38. Liu Y, Su C, Zu Y, Chen X, Sha J, Dai J. Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites. Sci Rep. 2022;12(1):20489. doi:10.1038/s41598-022-24971-3

39. Wang P, Zhang Y-L, K-L F, et al. Zinc-coordinated polydopamine surface with a nanostructure and superhydrophilicity for antibiofouling and antibacterial applications. 10.1039/D2MA00482H. Mater Adv. 2022;3(13):5476–5487. doi:10.1039/D2MA00482H

40. Cheng D, Ding R, Jin X, et al. Strontium Ion-functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration. ACS Appl Mater Interfaces. 2023;15(16):19951–19965. doi:10.1021/acsami.3c00655

41. Xiong W, Yuan L, Wang L, et al. Preparation of berberine-naringin dual drug-loaded composite microspheres and evaluation of their antibacterial-osteogenic properties. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023;37(12):1505–1513. doi:10.7507/1002-1892.202308054

42. Wang Y, Hu Y, Lan S, et al. A recombinant parathyroid hormone-related peptide locally applied in osteoporotic bone defect. Adv Sci. 2023;10(22):e2300516. doi:10.1002/advs.202300516

43. Gan D, Huang Z, Wang X, et al. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core-shell PEDOT@PZIF-71 system. Mater Horiz. 2023;10(6):2169–2180. doi:10.1039/d2mh01234k

44. Baccaro LF, Conde DM, Costa-Paiva L, Pinto-Neto AM. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clin Interv Aging. 2015;10:583–591. doi:10.2147/cia.S54614

45. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30(2):160–167. doi:10.1097/bor.0000000000000479

46. Lv H, Chen W, Yao M, Hou Z, Zhang Y. Collecting data on fractures: a review of epidemiological studies on orthopaedic traumatology and the Chinese experience in large volume databases. Int Orthop. 2022;46(5):945–951. doi:10.1007/s00264-022-05299-z

47. Zhou Z, Wang X, Yu H, Yu C, Zhang F. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules. 2022;55(6):2193–2201. doi:10.1021/acs.macromol.1c02534

48. Lu L, Niu W, Li J, et al. Rapid photo-responsive self-healing cross-linked polyurea/ polydopamine nanocomposites with multiple dynamic bonds and bio-based rosin. Compos Sci Technol. 2024;254:110693. doi:10.1016/j.compscitech.2024.110693

49. Zhao Y, He P, Yao J, et al. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials. 2023;301:122237. doi:10.1016/j.biomaterials.2023.122237

50. Dong Z, Gong H, Gao M, et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics. 2016;6(7):1031–1042. doi:10.7150/thno.14431

51. Deng JH, Luo J, Mao YL, et al. π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks. Sci Adv. 2020;6(2):eaax9976. doi:10.1126/sciadv.aax9976

52. Li JY, Long XY, Yin HX, Qiao JQ, Lian HZ. Magnetic solid-phase extraction based on a polydopamine-coated Fe3 O4 nanoparticles absorbent for the determination of bisphenol A, tetrabromobisphenol A, 2,4,6-tribromophenol, and (S)-1,1’-bi-2-naphthol in environmental waters by HPLC. J Separat Sci. 2016;39(13):2562–2572. doi:10.1002/jssc.201600231

53. Zhang M, Fan Z, Zhang J, et al. Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. Int J Biol Macromol. 2023;232:123445. doi:10.1016/j.ijbiomac.2023.123445

54. Shlapakova LE, Botvin VV, Mukhortova YR, et al. Magnetoactive composite conduits based on Poly(3-hydroxybutyrate) and magnetite nanoparticles for repair of peripheral nerve injury. ACS Appl Bio Mater. 2024;7(2):1095–1114. doi:10.1021/acsabm.3c01032

55. Yang J, Wu J, Guo Z, Zhang G, Zhang H. Iron oxide nanoparticles combined with static magnetic fields in bone remodeling. Cells. 2022;11;20. doi:10.3390/cells11203298.

56. Siciliano G, Monteduro AG, Turco A, et al. Polydopamine-coated magnetic iron oxide nanoparticles: from design to applications. Nanomaterials. 2022;12(7). doi:10.3390/nano12071145

57. Huang Z, He Y, Chang X, et al. A magnetic iron oxide/polydopamine coating can improve osteogenesis of 3D-printed porous titanium scaffolds with a static magnetic field by upregulating the TGFβ-smads pathway. Adv Healthc Mater. 2020;9(14):e2000318. doi:10.1002/adhm.202000318

58. Liu M, Yu W, Zhang F, et al. Fe(3)O(4)@Polydopamine-Labeled MSCs targeting the spinal cord to treat neuropathic pain under the guidance of a magnetic field. Int j Nanomed. 2021;16:3275–3292. doi:10.2147/ijn.S296398

59. Yang W, Hu H, Pan Q, Deng X, Zhang Y, Shao Z. Iron-polydopamine coated multifunctional nanoparticle SiO2@PDA/Fe3+-FA mediated low temperature photothermal for chemodynamic therapy of cisplatin-insensitive osteosarcoma. Mater Des. 2023;227:111785. doi:10.1016/j.matdes.2023.111785

60. Dai S, Yue S, Ning Z, Jiang N, Gan Z. Polydopamine nanoparticle-reinforced near-infrared light-triggered shape memory polycaprolactone-polydopamine polyurethane for biomedical implant applications. ACS Appl Mater Interfaces. 2022;14(12):14668–14676. doi:10.1021/acsami.2c03172

61. Cao X, Liu H, Yang X, Tian J, Luo B, Liu M. Halloysite nanotubes@polydopamine reinforced polyacrylamide-gelatin hydrogels with NIR light triggered shape memory and self-healing capability. Compos Sci Technol. 2020;191:108071. doi:10.1016/j.compscitech.2020.108071

62. Ni X, Gao Y, Zhang X, Lei Y, Sun G, You B. An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres. Chem Eng J. 2021;406:126725. doi:10.1016/j.cej.2020.126725

63. Wang Q, Yan X, Liu P, Xu Y, Guan Q, You Z. Near-Infrared Light Triggered the Shape Memory Behavior of Polydopamine-Nanoparticle-Filled Epoxy Acrylate. Polymers. 2023;15(16). doi:10.3390/polym15163394

64. Wei Y, Qi X, He S, Deng S, Liu D, Fu Q. Gradient polydopamine coating: a simple and general strategy toward multishape memory effects. ACS Appl Mater Interfaces. 2018;10(38):32922–32934. doi:10.1021/acsami.8b13134

65. Yang L, Tong R, Wang Z, Xia H. Polydopamine particle-filled shape-memory polyurethane composites with fast near-infrared light responsibility. Chemphyschem. 2018;19(16):2052–2057. doi:10.1002/cphc.201800022

66. Ha YM, Kim YN, Jung YC. Rapid and local self-healing ability of polyurethane nanocomposites using photothermal polydopamine-coated graphene oxide triggered by near-infrared laser. Polymers. 2021;13(8). doi:10.3390/polym13081274

67. Seth A, Gholami Derami H, Gupta P, et al. Polydopamine-mesoporous silica core-shell nanoparticles for combined photothermal immunotherapy. ACS Appl Mater Interfaces. 2020;12(38):42499–42510. doi:10.1021/acsami.0c10781

68. Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017;55:13–27. doi:10.1016/j.actbio.2017.03.055

69. Wong S, Cao C, Lessio M, Stenzel MH. Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. Nanoscale. 2022;14(26):9448–9458. doi:10.1039/d2nr01795d

70. Chin KY. The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des Devel Ther. 2016;10:3029–3042. doi:10.2147/dddt.S117432

71. Nador F, Guisasola E, Baeza A, Villaecija MA, Vallet-Regí M, Ruiz-Molina D. Synthesis of polydopamine-like nanocapsules via removal of a sacrificial mesoporous silica template with water. Chemistry. 2017;23(12):2753–2758. doi:10.1002/chem.201604631

72. Ouyang Z, Tan T, Liu C, et al. Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd(2)(CO(3))(3)@PDA nanoparticles via TLR-2/NF-κB/Akt signaling. Biomaterials. 2019;205:50–63. doi:10.1016/j.biomaterials.2019.03.018

73. Nie J, Cheng W, Peng Y, et al. Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery. 2017;24(1):1124–1138. doi:10.1080/10717544.2017.1362677

74. Wang Y, Ge W, Ma Z, et al. Use of mesoporous polydopamine nanoparticles as a stable drug-release system alleviates inflammation in knee osteoarthritis. APL Bioeng. 2022;6(2):026101. doi:10.1063/5.0088447

75. Wang JL, Ren KF, Chang H, Zhang SM, Jin LJ, Ji J. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Phys Chemist Chem Phys. 2014;16(7):2936–2943. doi:10.1039/c3cp54354d

76. Demirci S, Sahiner M, Suner SS, Sahiner N. Improved biomedical properties of polydopamine-coated carbon nanotubes. Micromachines. 2021;12(11). doi:10.3390/mi12111280

77. Lai M, Jin Z, Su Z. Surface modification of TiO(2) nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Mater Sci Eng C Mater Biol Appl. 2017;73:490–497. doi:10.1016/j.msec.2016.12.083

78. Jin M, Zhu J, Meng Z, et al. TiO(2)nanotubes-MoS(2)/PDA-LL-37 exhibits efficient anti-bacterial activity and facilitates new bone formation under near-infrared laser irradiation. Biom Mater. 2022;17(4). doi:10.1088/1748-605X/ac6470

79. He Y, Mu C, Shen X, et al. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment. Acta Biomater. 2018;80:412–424. doi:10.1016/j.actbio.2018.09.036

80. Zhang G, Zhang X, Yang Y, et al. Dual light-induced in situ antibacterial activities of biocompatibleTiO(2)/MoS(2)/PDA/RGD nanorod arrays on titanium. Biomater Sci. 2020;8(1):391–404. doi:10.1039/c9bm01507h

81. Luo R, Tang L, Wang J, et al. Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surf B. 2013;106:66–73. doi:10.1016/j.colsurfb.2013.01.033

82. Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2020;117:111245. doi:10.1016/j.msec.2020.111245

83. Hong L, Yuan L, Xu X, et al. Biocompatible Nanotube-Strontium/polydopamine-arginine-glycine-aspartic acid coating on Ti6Al4V enhances osteogenic properties for biomedical applications. Microsc Res Techn. 2022;85(4):1518–1526. doi:10.1002/jemt.24014

84. Sun H, Shang Y, Guo J, et al. Artificial periosteum with oriented surface nanotopography and high tissue adherent property. ACS Appl Mater Interfaces. 2023;15(39):45549–45560. doi:10.1021/acsami.3c07561

85. Gan D, Xing W, Jiang L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Communicat. 2019;10(1):1487. doi:10.1038/s41467-019-09351-2

86. Shi W, Li H, Chen J, et al. Stretchable, self-healing, and bioactive hydrogel with high-functionality N,N-bis(acryloyl)cystamine dynamically bonded Ag@polydopamine crosslinkers for wearable sensors. Adv Sci. 2024:e2404451. doi:10.1002/advs.202404451

87. Chen C, Zheng N, Wu W, et al. Self-adhesive and conductive dual-network polyacrylamide hydrogels reinforced by aminated lignin, dopamine, and biomass carbon aerogel for ultrasensitive pressure sensor. ACS Appl Mater Interfaces. 2022;14(48):54127–54140. doi:10.1021/acsami.2c12914

88. Li Y, Yang D, Wu Z, et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano Energy. 2023;109:108324. doi:10.1016/j.nanoen.2023.108324

89. Xiong F, Wei S, Sheng H, et al. Three-layer core-shell structure of polypyrrole/polydopamine/poly(l-lactide) nanofibers for wound healing application. Int J Biol Macromol. 2022;222(Pt B):1948–1962. doi:10.1016/j.ijbiomac.2022.09.284

90. Xu X, Liu X, Tan L, et al. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 2018;77:352–364. doi:10.1016/j.actbio.2018.07.030

91. Chen M, Chen Y, Wei C. Nanoparticles based composite coatings with tunable vascular endothelial growth factor and bone morphogenetic protein-2 release for bone regeneration. J Biomed Mater Res A. 2023;111(7):1044–1053. doi:10.1002/jbm.a.37489

92. Han R, Min Y, Li G, Chen S, Xie M, Zhao Z. Supercritical CO(2)-assisted fabrication of CM-PDA/SF/nHA nanofibrous scaffolds for bone regeneration and chemo-photothermal therapy against osteosarcoma. Biomater Sci. 2023;11(15):5218–5231. doi:10.1039/d3bm00532a

93. Wu Y, Huo S, Liu S, Hong Q, Wang Y, Lyu Z. Cu-Sr bilayer bioactive glass nanoparticles/polydopamine functionalized polyetheretherketone enhances osteogenic activity and prevents implant-associated infections through spatiotemporal immunomodulation. Adv Healthc Mater. 2023;12(32):e2301772. doi:10.1002/adhm.202301772

94. Yu YL, Wu JJ, Lin CC, et al. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil Med Res. 2023;10(1):21. doi:10.1186/s40779-023-00454-y

95. Jiang X, Lei L, Sun W, et al. [Bioceramic scaffolds with two-step internal/external modification of copper-containing polydopamine enhance antibacterial and alveolar bone regeneration capability]. 含铜聚多巴胺内外双修饰法构建抗菌促骨再生生物陶瓷支架. J Zhejiang Univ Sci B. 2024;25(1):65–82. doi:10.1631/jzus.B23d0004

96. Equy E, Hirtzel J, Hellé S, et al. Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells. Beilstein J Nanotechnol. 2023;14:1208–1224. doi:10.3762/bjnano.14.100

97. Langeder J, Döring K, Schmietendorf H, Grienke U, Schmidtke M, Rollinger JM. (1)H NMR-based biochemometric analysis of morus alba extracts toward a multipotent herbal anti-infective. J Nat Prod. 2023;86(1):8–17. doi:10.1021/acs.jnatprod.2c00481

98. Peng L, Liang Y, Yue J, et al. Dramatic improvement in the mechanical properties of polydopamine/polyacrylamide hydrogel mediated human amniotic membrane. RSC Adv. 2023;13(6):3635–3642. doi:10.1039/d2ra07622e

99. Ma W, Chen H, Cheng S, Wu C, Wang L, Du M. Gelatin hydrogel reinforced with mussel-inspired polydopamine-functionalized nanohydroxyapatite for bone regeneration. Int J Biol Macromol. 2023;240:124287. doi:10.1016/j.ijbiomac.2023.124287

100. Zheng P, Ding B, Li G. Polydopamine-incorporated nanoformulations for biomedical applications. Macromol biosci. 2020;20(12):e2000228. doi:10.1002/mabi.202000228

101. Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ. Polymeric biomaterials for medical implants and devices. ACS Biomat Sci Engine. 2016;2(4):454–472. doi:10.1021/acsbiomaterials.5b00429

102. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014;114(9):5057–5115. doi:10.1021/cr400407a

103. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as ”drug” carriers. Bioact. Mater. 2020;5(3):522–541. doi:10.1016/j.bioactmat.2020.04.003

104. Wu HY, Lin YH, Lee AK, Kuo TY, Tsai CH, Shie MY. Combined effects of polydopamine-assisted copper immobilization on 3D-Printed Porous Ti6Al4V scaffold for angiogenic and osteogenic bone regeneration. Cells. 2022;11(18). doi:10.3390/cells11182824

105. Wang H, Yuan C, Lin K, Zhu R, Zhang S. Modifying a 3D-printed Ti6Al4V implant with polydopamine coating to improve BMSCs growth, osteogenic differentiation, and in situ osseointegration in vivo. Front Bioeng Biotechnol. 2021;9:761911. doi:10.3389/fbioe.2021.761911

106. Ko E, Lee JS, Kim H, et al. Electrospun silk fibroin nanofibrous scaffolds with two-stage hydroxyapatite functionalization for enhancing the osteogenic differentiation of human adipose-derived mesenchymal stem cells. ACS Appl Mater Interfaces. 2018;10(9):7614–7625. doi:10.1021/acsami.7b03328

107. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31(6):619–624. doi:10.1080/01926230390241800

108. Xu Y, Li H, Wu J, Yang Q, Jiang D, Qiao B. Polydopamine-induced hydroxyapatite coating facilitates hydroxyapatite/polyamide 66 implant osteogenesis: an in vitro and in vivo evaluation. Int j Nanomed. 2018;13:8179–8193. doi:10.2147/ijn.S181137

109. Yan S, Huang Q, Chen J, et al. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int j Nanomed. 2019;14:6799–6812. doi:10.2147/ijn.S216194

110. Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F. Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. J Nanobiotechnology. 2022;20(1):479. doi:10.1186/s12951-022-01697-y

111. Xie M, Ge J, Lei B, Zhang Q, Chen X, Star-Shaped MPX. Biodegradable, and Elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Macromol biosci. 2015;15(12):1656–1662. doi:10.1002/mabi.201500237

112. Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J. Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interfaces. 2019;11(41):37381–37396. doi:10.1021/acsami.9b07053

113. Zhou Z, Yao Q, Li L, et al. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Med Sci Monit. 2018;24:6934–6945. doi:10.12659/msm.911770

114. Zhong S, Luo R, Wang X, et al. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell. Colloids Surf B. 2014;116:553–560. doi:10.1016/j.colsurfb.2014.01.030

115. Chien CY, Tsai WB. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces. 2013;5(15):6975–6983. doi:10.1021/am401071f

116. Zhao MH, Chen XP, Wang Q. Wetting failure of hydrophilic surfaces promoted by surface roughness. Sci Rep. 2014;4:5376. doi:10.1038/srep05376

117. Wang W, Tang Z, Zhang Y, Wang Q, Liang Z, Zeng X. Mussel-inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol biosci. 2020;20(10):e2000222. doi:10.1002/mabi.202000222

118. Al Qahtani WM, Schille C, Spintzyk S, et al. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed Tech. 2017;62(1):75–87. doi:10.1515/bmt-2015-0139

119. Gittens RA, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32(13):3395–3403. doi:10.1016/j.biomaterials.2011.01.029

120. Chen M, Li M, Ren X, et al. DNAzyme Nanoconstruct-Integrated Autonomously-Adaptive Coatings Enhance Titanium-Implant Osteointegration by Cooperative Angiogenesis and Vessel Remodeling. ACS Nano. 2023;17(16):15942–15961. doi:10.1021/acsnano.3c04049

121. Cheng X, Yang X, Liu C, et al. Stabilization of apatite coatings on PPENK surfaces by mechanical interlocking to promote bioactivity and osseointegration in vivo. ACS Appl Mater Interfaces. 2023;15(1):697–710. doi:10.1021/acsami.2c20633

122. Davaie S, Hooshmand T, Najafi F, Haghbin Nazarpak M, Pirmoradian M. Synthesis, characterization, and induced osteogenic differentiation effect of collagen membranes functionalized by polydopamine/graphene oxide for bone tissue engineering. ACS Appl Bio Mater. 2023;6(11):4629–4644. doi:10.1021/acsabm.3c00400

123. Li Y, Liu C, Cheng X, et al. PDA-BPs integrated mussel-inspired multifunctional hydrogel coating on PPENK implants for anti-tumor therapy, antibacterial infection and bone regeneration. Bioact. Mater. 2023;27:546–559. doi:10.1016/j.bioactmat.2023.04.020

124. Liu Q, Chen M, Gu P, et al. Covalently grafted biomimetic matrix reconstructs the regenerative microenvironment of the porous gradient polycaprolactone scaffold to accelerate bone remodeling. Small. 2023;19(19):e2206960. doi:10.1002/smll.202206960

125. Bedhiafi T, Idoudi S, Alhams AA, et al. Applications of polydopaminic nanomaterials in mucosal drug delivery. J Cont Rel. 2023;353:842–849. doi:10.1016/j.jconrel.2022.12.037

126. Wang S, Wu Z, Wang Y, et al. A homogeneous dopamine-silver nanocomposite coating: striking a balance between the antibacterial ability and cytocompatibility of dental implants. Regen Biomater. 2023;10:rbac082. doi:10.1093/rb/rbac082

127. Xing L, Song H, Wei J, et al. Influence of a composite polylysine-polydopamine-quaternary ammonium salt coating on titanium on its ostogenic and antibacterial performance. Molecules. 2023;28:10. doi:10.3390/molecules28104120

128. Jin X, Xie D, Zhang Z, et al. In vitro and in vivo studies on biodegradable Zn porous scaffolds with a drug-loaded coating for the treatment of infected bone defect. Mater Today Bio. 2024;24:100885. doi:10.1016/j.mtbio.2023.100885

129. Du J, Zhou Y, Bao X, et al. Surface polydopamine modification of bone defect repair materials: characteristics and applications. Front Bioeng Biotechnol. 2022;10:974533. doi:10.3389/fbioe.2022.974533

130. Feng P, Liu M, Peng S, Bin S, Zhao Z, Shuai C. Polydopamine modified polycaprolactone powder for fabrication bone scaffold owing intrinsic bioactivity. J Mater Res Technol. 2021;15:3375–3385. doi:10.1016/j.jmrt.2021.09.137

131. Davidsen MB, Teixeira JFL, Dehli J, et al. Post-treatments of polydopamine coatings influence cellular response. Colloids Surf B. 2021;207:111972. doi:10.1016/j.colsurfb.2021.111972

132. Li L, Yang L, Liao Y, et al. Superhydrophilic versus normal polydopamine coating: a superior and robust platform for synergistic antibacterial and antithrombotic properties. Chem Eng J. 2020;402:126196. doi:10.1016/j.cej.2020.126196

133. Yazdi MK, Zare M, Khodadadi A, et al. Polydopamine biomaterials for skin regeneration. ACS Biomater Sci Eng. 2022;8(6):2196–2219. doi:10.1021/acsbiomaterials.1c01436

134. Li Y, Yang J, Chen X, et al. Mitochondrial-targeting and NIR-responsive Mn(3)O(4)@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305:122449. doi:10.1016/j.biomaterials.2023.122449

135. Musilkova J, Kotelnikov I, Novotna K, et al. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface. J Mater Sci Mater Med. 2015;26(11):253. doi:10.1007/s10856-015-5583-3

136. Yang K, Lee JS, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials. 2012;33(29):6952–6964. doi:10.1016/j.biomaterials.2012.06.067

137. Ge L, Li Q, Huang Y, et al. Polydopamine-coated paper-stack nanofibrous membranes enhancing adipose stem cells’ adhesion and osteogenic differentiation. J Mat Chem B. 2014;2(40):6917–6923. doi:10.1039/c4tb00570h

138. Lin CC, Fu SJ. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Mater Sci Eng C Mater Biol Appl. 2016;58:254–263. doi:10.1016/j.msec.2015.08.009

139. Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Immobilization of BMP-2 and VEGF within multilayered polydopamine-coated scaffolds and the resulting osteogenic and angiogenic synergy of co-cultured human mesenchymal stem cells and human endothelial progenitor cells. Int J Mol Sci. 2020;21(17). doi:10.3390/ijms21176418

140. Kaushik N, Nhat Nguyen L, Kim JH, Choi EH, Kumar kaushik N. Strategies for using polydopamine to induce biomineralization of hydroxyapatite on implant materials for bone tissue engineering. Int J Mol Sci. 2020;21(18). doi:10.3390/ijms21186544

141. Zhou P, Wu F, Zhou T, et al. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials. 2016;87:1–17. doi:10.1016/j.biomaterials.2016.02.012

142. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS nano. 2018;12(9):8882–8892. doi:10.1021/acsnano.8b04022

143. Abdallah HM, Farag MA, Algandaby MM, et al. Osteoprotective Activity and metabolite fingerprint via UPLC/MS and GC/MS of lepidium sativum in ovariectomized rats. Nutrients. 2020;12(7). doi:10.3390/nu12072075

144. Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded sulfonated polyetheretherketone with osteogenesis promotion and osteoclastogenesis inhibition properties via immunomodulation for advanced osseointegration. J Mat Chem B. 2022;10(18):3531–3540. doi:10.1039/d1tb02802b

145. Chakka JL, Acri T, Laird NZ, et al. Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration. RSC Adv. 2021;11(22):13282–13291. doi:10.1039/d1ra01193f

146. Chen D, Yu C, Ying Y, et al. Study of the osteoimmunomodulatory properties of curcumin-modified copper-bearing titanium. Molecules. 2022;27:10. doi:10.3390/molecules27103205

147. Chen L, Wang B, Ren H, et al. Arg-Gly-Asp peptide functionalized poly-amino acid/ poly (p-benzamide) copolymer with enhanced mechanical properties and osteogenicity. Biomater Adv. 2022;133:112627. doi:10.1016/j.msec.2021.112627

148. Chen T, Zou Q, Du C, Wang C, Li Y, Fu B. Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect. Mater Sci Eng C Mater Biol Appl. 2020;116:111148. doi:10.1016/j.msec.2020.111148

149. Chen X, Zhu L, Liu H, et al. Biomineralization guided by polydopamine-modifed poly(L-lactide) fibrous membrane for promoted osteoconductive activity. Biom Mater. 2019;14(5):055005. doi:10.1088/1748-605X/ab2f2d

150. Cheng CH, Chen YW, Kai-Xing Lee A, Yao CH, Shie MY. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J Mater Sci Mater Med. 2019;30(7):78. doi:10.1007/s10856-019-6279-x

151. Cheng CH, Shie MY, Lai YH, Foo NP, Lee MJ, Yao CH. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for promoting bone regeneration. Polymers. 2021;13(21). doi:10.3390/polym13213731

152. Das EC, Dhawan S, Babu J, et al. Self-assembling polymeric dendritic peptide as functional osteogenic matrix for periodontal regeneration scaffolds-an in vitro study. J Periodontal Res. 2019;54(5):468–480. doi:10.1111/jre.12647

153. Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep. 2020;10(1):11764. doi:10.1038/s41598-020-68221-w

154. Deng Y, Shi J, Chan YK, et al. Heterostructured metal-organic frameworks/polydopamine coating endows polyetheretherketone implants with multimodal osteogenicity and photoswitchable disinfection. Adv Healthc Mater. 2022;11(14):e2200641. doi:10.1002/adhm.202200641

155. Deng Y, Sun Y, Bai Y, et al. In vitro biocompability/osteogenesis and in vivo bone formation evalution of peptide-decorated apatite nanocomposites assisted via polydopamine. J Biom Nanotechnol. 2016;12(4):602–618. doi:10.1166/jbn.2016.2096

156. Dimassi S, Tabary N, Chai F, et al. Polydopamine treatment of chitosan nanofibers for the conception of osteoinductive scaffolds for bone reconstruction. Carbohydr Polym. 2022;276:118774. doi:10.1016/j.carbpol.2021.118774

157. Douglas TE, Wlodarczyk M, Pamula E, et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J Tissue Eng Regen Med. 2014;8(11):906–918. doi:10.1002/term.1616

158. Du T, Zhao S, Dong W, et al. Surface modification of carbon fiber-reinforced polyetheretherketone with MXene nanosheets for enhanced photothermal antibacterial activity and osteogenicity. ACS Biomater. Sci. Eng. 2022;8(6):2375–2389. doi:10.1021/acsbiomaterials.2c00095

159. Duan L, Zuo J, Zhang F, et al. Magnetic Targeting of HU-MSCs in the Treatment of glucocorticoid-associated osteonecrosis of the femoral head through Akt/Bcl2/Bad/caspase-3 pathway. Int j Nanomed. 2020;15:3605–3620. doi:10.2147/ijn.S244453

160. Fardjahromi MA, Ejeian F, Razmjou A, et al. Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. Mater Sci Eng C Mater Biol Appl. 2021;123:111972. doi:10.1016/j.msec.2021.111972

161. Fu C, Jiang Y, Yang X, Wang Y, Ji W, Jia G. Mussel-inspired gold nanoparticle and PLGA/L-lysine-g-graphene oxide composite scaffolds for bone defect repair. Int j Nanomed. 2021;16:6693–6718. doi:10.2147/ijn.S328390

162. Gao T, Zhang N, Wang Z, et al. Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and nano-hydroxyapatite decorated with IGF-1 via polydopamine coating for enhancing cell proliferation and osteogenic differentiation. Macromol Biosci. 2015;15(8):1070–1080. doi:10.1002/mabi.201500069

163. Gao X, Song J, Ji P, et al. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2016;8(5):3499–3515. doi:10.1021/acsami.5b12413

164. Gao X, Zhang X, Song J, et al. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int j Nanomed. 2015;10:7109–7128. doi:10.2147/ijn.S94045

165. Gao Y, Yuan Z, Yuan X, et al. Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration. Bioact. Mater. 2022;14:377–388. doi:10.1016/j.bioactmat.2022.01.041

166. Ge L, Liu L, Wei H, et al. Preparation of a small intestinal submucosa modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating for pelvic reconstruction. J Biomater Appl. 2016;30(9):1385–1391. doi:10.1177/0885328216628469

167. Ghorai SK, Dutta A, Roy T, et al. Metal ion augmented mussel inspired polydopamine immobilized 3D printed osteoconductive scaffolds for accelerated bone tissue regeneration. ACS Appl Mater Interfaces. 2022;14(25):28455–28475. doi:10.1021/acsami.2c01657

168. Ghorbani F, Ghalandari B, Khan AL, Li D, Zamanian A, Yu B. Decoration of electrical conductive polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue engineering. Biotechnol Prog. 2020;36(6):e3043. doi:10.1002/btpr.3043

169. Ghorbani F, Kim M, Monavari M, Ghalandari B, Boccaccini AR. Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application. Front Bioeng Biotechnol. 2022;10:940070. doi:10.3389/fbioe.2022.940070

170. Ghorbani F, Zamanian A, Sahranavard M. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications. Biomed Tech. 2020;65(3):273–287. doi:10.1515/bmt-2019-0061

171. Han L, Jiang Y, Lv C, et al. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B. 2019;179:470–478. doi:10.1016/j.colsurfb.2019.04.024

172. Han L, Sun H, Tang P, et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration. Biomater Sci. 2018;6(3):538–549. doi:10.1039/c7bm01060e

173. He F, Li J, Wang Y, et al. Design of cefotaxime sodium-loaded polydopamine coatings with controlled surface roughness for titanium implants. ACS Biomater. Sci. Eng. 2022;8(11):4751–4763. doi:10.1021/acsbiomaterials.2c00702

174. Huang B, Chen M, Tian J, et al. Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration. Adv Healthc Mater. 2022;11(12):e2102540. doi:10.1002/adhm.202102540

175. Huang J, Lu J, Liu Z, et al. Covalent immobilization of VEGF on allogeneic bone through polydopamine coating to improve bone regeneration. Front Bioeng Biotechnol. 2022;10:1003677. doi:10.3389/fbioe.2022.1003677

176. Huang S, Liang N, Hu Y, Zhou X, Abidi N. Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Res Int. 2016;2016:2389895. doi:10.1155/2016/2389895

177. Huang Y, Du Z, Zheng T, et al. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res A. 2021;109(12):2580–2596. doi:10.1002/jbm.a.37252

178. Huang Z, Wu Z, Ma B, et al. Enhanced in vitro biocompatibility and osteogenesis of titanium substrates immobilized with dopamine-assisted superparamagnetic Fe(3)O(4) nanoparticles for hBMSCs. R Soc Open Sci. 2018;5(8):172033. doi:10.1098/rsos.172033

179. Ji S, Dube K, Chesterman JP, et al. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomater Sci. 2019;7(2):560–570. doi:10.1039/c8bm01269e

180. Jiang BB, Li SH, Zheng W. Preparation of Antibiotic-loaded copper-doped hydroxyapatite microspheres and evaluation of their antibacterial and osteogenic effect. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52(5):799–806. doi:10.12182/20210960209

181. Kao CT, Chen YJ, Ng HY, et al. Surface modification of calcium silicate via mussel-inspired polydopamine and effective adsorption of extracellular matrix to promote osteogenesis differentiation for bone tissue engineering. Materials. 2018;11(9). doi:10.3390/ma11091664

182. Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:165–173. doi:10.1016/j.msec.2015.06.028

183. Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202–3213. doi:10.1021/bm4008343

184. Kong L, Han Y, Lu Q, et al. Polydopamine coating with static magnetic field promotes the osteogenic differentiation of human bone-derived mesenchymal stem cells on three-dimensional printed porous titanium scaffolds by upregulation of the BMP-Smads signaling pathway. Am J Transl Res. 2020;12(12):7812–7825.

185. Kwack KH, Ji JY, Park B, Heo JS. Fucoidan (Undaria pinnatifida)/polydopamine composite-modified surface promotes osteogenic potential of periodontal ligament stem cells. Mar Drugs. 2022;20(3). doi:10.3390/md20030181

186. Lee DJ, Lee YT, Zou R, Daniel R, Ko CC. Polydopamine-laced biomimetic material stimulation of bone marrow derived mesenchymal stem cells to promote osteogenic effects. Sci Rep. 2017;7(1):12984. doi:10.1038/s41598-017-13326-y

187. Lee DJ, Tseng HC, Wong SW, Wang Z, Deng M, Ko CC. Dopaminergic effects on in vitro osteogenesis. Bone Res. 2015;3:15020. doi:10.1038/boneres.2015.20

188. Lee JS, Jin Y, Park HJ, et al. In situ bone tissue engineering with an endogenous stem cell mobilizer and osteoinductive nanofibrous polymeric scaffolds. Biotechnol J. 2017;12(12). doi:10.1002/biot.201700062

189. Lee JS, Lee JC, Heo JS. Polydopamine-assisted BMP-2 immobilization on titanium surface enhances the osteogenic potential of periodontal ligament stem cells via integrin-mediated cell-matrix adhesion. J Cell Commun Signal. 2018;12(4):661–672. doi:10.1007/s12079-018-0468-0

190. Lee JS, Yi JK, An SY, Heo JS. Increased osteogenic differentiation of periodontal ligament stem cells on polydopamine film occurs via activation of integrin and PI3K signaling pathways. Cell Physiol Biochem. 2014;34(5):1824–1834. doi:10.1159/000366381

191. Lee SJ, Lee D, Yoon TR, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 2016;40:182–191. doi:10.1016/j.actbio.2016.02.006

192. Lee SJ, Lee HJ, Kim SY, et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies. Nanoscale. 2018;10(33):15447–15453. doi:10.1039/c8nr04037k

193. Li B, Liu F, Ye J, et al. Regulation of macrophage polarization through periodic photo-thermal treatment to facilitate osteogenesis. Small. 2022;18(38):e2202691. doi:10.1002/smll.202202691

194. Li H, Chen S, Chen J, et al. Mussel-inspired artificial grafts for functional ligament reconstruction. ACS Appl Mater Interfaces. 2015;7(27):14708–14719. doi:10.1021/acsami.5b05109

195. Li H, Wang H, Pan J, et al. Nanoscaled bionic periosteum orchestrating the osteogenic microenvironment for sequential bone regeneration. ACS Appl Mater Interfaces. 2020;12(33):36823–36836. doi:10.1021/acsami.0c06906

196. Li H, Wang X, Shen Y, Tang H, Tang X, Zhang Y. Chondrogenic and ameliorated inflammatory effects of chitosan-based biomimetic scaffold loaded with icariin. Sheng Wu Gong Cheng Xue Bao. 2022;38(6):2308–2321. doi:10.13345/j.cjb.210838

197. Li H, Zheng L, Wang M. Biofunctionalized nanofibrous bilayer scaffolds for enhancing cell adhesion, proliferation and osteogenesis. ACS Appl Bio Mater. 2021;4(6):5276–5294. doi:10.1021/acsabm.1c00414

198. Li J, Yao Q, Xu Y, Zhang H, Li LL, Wang L. Lithium chloride-releasing 3D printed scaffold for enhanced cartilage regeneration. Med Sci Monit. 2019;25:4041–4050. doi:10.12659/msm.916918

199. Li L, Li Y, Yang L, et al. Polydopamine coating promotes early osteogenesis in 3D printing porous Ti6Al4V scaffolds. Ann Transl Med. 2019;7(11):240. doi:10.21037/atm.2019.04.79

留言 (0)

沒有登入
gif