Computational fluid dynamics simulating of the FDA benchmark blood pump with different coefficient sets and scaler shear stress models used in the power-law hemolysis model

Lokhandwalla MB. Sturtevant, Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields. Phys Med Biol. 2001;46:413.

Article  CAS  PubMed  Google Scholar 

Nikfar M, et al. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model. Artif Organs. 2020;44:E348–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding J, et al. Shear-induced hemolysis: species differences. Artif Organs. 2015;39:795–802.

Article  PubMed  Google Scholar 

Schaer DJ, et al. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood, J Am Soc Hematol. 2013;121:1276–84.

CAS  Google Scholar 

Nakamura M, et al. Pulmonary artery pulsatility index and hemolysis during impella-incorporated mechanical circulatory support. J Clin Med. 2022;11:1206.

Article  PubMed  PubMed Central  Google Scholar 

Burgreen GW, et al. Computational fluid dynamics as a development tool for rotary blood pumps. Artif Organs. 2001;25:336–40.

Article  CAS  PubMed  Google Scholar 

Wiegmann L, et al. Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Ann Biomed Eng. 2018;46:417–28.

Article  CAS  PubMed  Google Scholar 

Mohammadi R, et al. Probabilistic CFD analysis on the flow field and performance of the FDA centrifugal blood pump. Appl Math Model. 2022;109:555–77.

Article  Google Scholar 

Behbahani M, et al. A review of computational fluid dynamics analysis of blood pumps. Eur J Appl Math. 2009;20:363–97.

Article  CAS  Google Scholar 

Wu P, et al. Effect of turbulent inlet conditions on the prediction of flow field and hemolysis in the FDA ideal medical device. Proc Inst Mech Eng C J Mech Eng Sci. 2021;235:391–401.

Article  Google Scholar 

Wu P, et al. On the accuracy of hemolysis models in Couette-type blood shearing devices. Artif Organs. 2018;42:E290–303.

Article  PubMed  Google Scholar 

Galdi, G.P., et al., Hemodynamical flows. Delhi Book Store, 2008.

US Food and Drug Administration. Critical path—CFD/blood damage project.; Available from: https://fdacfd.nci.nih.gov. Accessed 12 Jun 2023.

Good BC, Manning KB. Computational modeling of the food and drug administration’s benchmark centrifugal blood pump. Artif Organs. 2020;44:E263–76.

Article  PubMed  PubMed Central  Google Scholar 

Fraser KH, et al. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys. 2011;33:263–80.

Article  PubMed  Google Scholar 

Hariharan P, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J Biomech Eng. 2011;133:041002.

Article  PubMed  Google Scholar 

Stewart SF, et al. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc Eng Technol. 2012;3:139–60.

Article  Google Scholar 

Stewart SF, et al. Results of FDA’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser. Cardiovasc Eng Technol. 2013;4:374–91.

Article  Google Scholar 

Herbertson LH, et al. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model. Artif Organs. 2015;39:237–48.

Article  CAS  PubMed  Google Scholar 

Malinauskas RA, et al. FDA benchmark medical device flow models for CFD validation. ASAIO J. 2017;63:150–60.

Article  PubMed  Google Scholar 

Ponnaluri SV, et al. Results of the interlaboratory computational fluid dynamics study of the FDA benchmark blood pump. Ann Biomed Eng. 2023;51:253–69.

Article  PubMed  Google Scholar 

Taskin ME, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 2012;58:363–72.

Article  PubMed  Google Scholar 

Yu H, et al. A review of hemolysis prediction models for computational fluid dynamics. Artif Organs. 2017;41(7):603–21.

Article  PubMed  Google Scholar 

Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol. 2019;18:845–81.

Article  PubMed  Google Scholar 

Hariharan P, et al. Verification benchmarks to assess the implementation of computational fluid dynamics based hemolysis prediction models. J Biomech Eng. 2015;137:094501.

Article  Google Scholar 

Craven BA, et al. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech Model Mechanobiol. 2019;18:1005–30.

Article  PubMed  Google Scholar 

Wu P, et al. An energy-dissipation-based power-law formulation for estimating hemolysis. Biomech Model Mechanobiol. 2020;19:591–602.

Article  PubMed  Google Scholar 

Puentener P, Schuck M, Kolar JW. CFD assisted evaluation of in vitro experiments on bearingless blood pumps. IEEE Trans Biomed Eng. 2020;68:1370–8.

Article  Google Scholar 

U.S., Food & Drug Administration, FDA’s “critical path” computational fluid dynamics (CFD)/blood damage project. Available from: https://ncihub.cancer.gov/wiki/FDA_CFD/ComputationalRoundRobin2Pump. Accessed 12 Jun 2023.

Giersiepen M, et al. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6.

Article  CAS  PubMed  Google Scholar 

Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs. 2004;28:1016–25.

Article  PubMed  Google Scholar 

Mises RV. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1913;1913:582–92.

Google Scholar 

Bludszuweit C. Three-Dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs. 1995;19:590–6.

Article  CAS  PubMed  Google Scholar 

Faghih MM, Keith MS. Extending the power-law hemolysis model to complex flows. J Biomech Eng. 2016;138:124504.

Article  Google Scholar 

Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology. 1980;17:17–24.

Article  CAS  PubMed  Google Scholar 

Taskin ME, et al. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artif Organs. 2010;34:1099–113.

Article  PubMed  Google Scholar 

Zhang T, et al. Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif Organs. 2011;35:1180–6.

Article  PubMed  Google Scholar 

Fraser KH, et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng. 2012;134:81002.

Article  Google Scholar 

Ghadimi B, et al. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm. J Artif Organs. 2019;22:29–36.

Article  PubMed  Google Scholar 

Ishii K, et al. Hydrodynamic characteristics of the helical flow pump. J Artif Organs. 2015;18:206–12.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif