Kawachi H, Fujimoto D, Morimoto T et al (2019) Early depth of tumor shrinkage and treatment outcomes in non-small cell lung cancer treated using Nivolumab. Invest New Drugs 37:1257–1265. https://doi.org/10.1007/s10637-019-00770-y
Article CAS PubMed Google Scholar
Ishida M, Morimoto K, Yamada T et al (2023) Early tumor shrinkage as a predictor of favorable treatment outcomes in patients with extensive-stage SCLC who received programmed cell death-ligand 1 inhibitor plus platinum-etoposide chemotherapy: a prospective observational study. JTO Clin Res Rep 4:100493. https://doi.org/10.1016/j.jtocrr.2023.100493
Article PubMed PubMed Central Google Scholar
McCoach CE, Blumenthal GM, Zhang L et al (2017) Exploratory analysis of the association of depth of response and survival in patients with metastatic non-small-cell lung cancer treated with a targeted therapy or immunotherapy. Ann Oncol 28:2707–2714. https://doi.org/10.1093/annonc/mdx414
Article CAS PubMed PubMed Central Google Scholar
Jo H, Yoshida T, Yagishita S et al (2023) Clinical characteristics and pharmacokinetics change of long-term responders to antiprogrammed cell death Protein 1 inhibitor among patients with advanced NSCLC. JTO Clin Res Rep 4:100474. https://doi.org/10.1016/j.jtocrr.2023.100474
Article PubMed PubMed Central Google Scholar
Xie X, Li X, Yao W (2021) A narrative review: depth of response as a predictor of the long-term outcomes for solid tumors. Transl Cancer Res 10:1119–1130. https://doi.org/10.21037/tcr-20-2547
Saijo K, Imai H, Ouchi K et al (2023) Depth of response may predict clinical outcome in patients with recurrent/metastatic head and neck cancer treated with pembrolizumab-containing regimens. Front Oncol 13:1230731. https://doi.org/10.3389/fonc.2023.1230731
Article CAS PubMed PubMed Central Google Scholar
Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med 372:2018–2028. https://doi.org/10.1056/NEJMoa1501824
Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in Advanced nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med 373:1627–1639. https://doi.org/10.1056/NEJMoa1507643
Article CAS PubMed PubMed Central Google Scholar
Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung Cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627
Article CAS PubMed PubMed Central Google Scholar
Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265. https://doi.org/10.1016/S0140-6736(16)32517-X.Publishedonlinefirst:2016/12/17
Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. https://doi.org/10.1016/S0140-6736(15)01281-7. Published online first: 2015/12/30
Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung ancer. N Engl J Med 375:1823–1833. https://doi.org/10.1056/NEJMoa1606774
Article CAS PubMed Google Scholar
Herbst RS, Giaccone G, de Marinis F et al (2020) Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med 383:1328–1339. https://doi.org/10.1056/NEJMoa1917346. (Published online first: 2020/10/01)
Article CAS PubMed Google Scholar
Mok TSK, Wu YL, Kudaba I et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393:1819–1830. https://doi.org/10.1016/S0140-6736(18)32409-7
Article CAS PubMed Google Scholar
Reck M, Rodríguez-Abreu D, Robinson AG et al (2021) Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50. J Clin Oncol 39:2339–2349. https://doi.org/10.1200/JCO.21.00174
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Abreu D, Powell SF, Hochmair MJ et al (2021) Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol-specified final analysis from KEYNOTE-189. Ann Oncol 32:881–895. https://doi.org/10.1016/j.annonc.2021.04.008
Article CAS PubMed Google Scholar
Pons-Tostivint E, Hulo P, Guardiolle V et al (2023) Real-world multicentre cohort of first-line pembrolizumab alone or in combination with platinum-based chemotherapy in non-small cell lung cancer PD-L1 ≥ 50. Cancer Immunol Immunother 72:1881–1890. https://doi.org/10.1007/s00262-022-03359-2
Article CAS PubMed PubMed Central Google Scholar
Pérol M, Felip E, Dafni U et al (2022) Effectiveness of PD-(L)1 inhibitors alone or in combination with platinum-doublet chemotherapy in first-line (1L) non-squamous non-small-cell lung cancer (Nsq-NSCLC) with PD-L1-high expression using real-world data. Ann Oncol 33:511–521. https://doi.org/10.1016/j.annonc.2022.02.008
Article CAS PubMed Google Scholar
Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline, version 1.1. Eur J Cancer, version 1.1 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026
Aguilar EJ, Ricciuti B, Gainor JF et al (2019) Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann Oncol 30:1653–1659. https://doi.org/10.1093/annonc/mdz288
Article CAS PubMed Google Scholar
Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244
Article CAS PubMed Google Scholar
Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25. https://doi.org/10.1038/cdd.2013.67
Article CAS PubMed Google Scholar
Morimoto K, Uchino J, Yokoi T et al (2022) Early discontinuation of induction therapy in chemoimmunotherapy as an effective alternative to the standard regimen in patients with non-small cell lung cancer: a retrospective study. J Cancer Res Clin Oncol 148:2437–2446. https://doi.org/10.1007/s00432-021-03782-5
Article CAS PubMed Google Scholar
Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68. https://doi.org/10.1016/j.canlet.2016.01.043
Article CAS PubMed Google Scholar
Li JY, Chen YP, Li YQ, Liu N, Ma J (2021) Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Mol Cancer 20:27. https://doi.org/10.1186/s12943-021-01317-7
Article PubMed PubMed Central Google Scholar
DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67. https://doi.org/10.1158/2159-8274.CD-10-0028
Article CAS PubMed PubMed Central Google Scholar
Nakasone ES, Askautrud HA, Kees T et al (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488–503. https://doi.org/10.1016/j.ccr.2012.02.017
Article CAS PubMed PubMed Central Google Scholar
Suzuki S, Haratani K, Hayashi H et al (2022) Association of tumour burden with the efficacy of programmed cell death-1/programmed cell death ligand-1 inhibitors for treatment-naïve advanced non-small-cell lung cancer. Eur J Cancer 161:44–54. https://doi.org/10.1016/j.ejca.2021.11.011
留言 (0)