NIH Consensus Development Panel on Osteoporosis Prevention D, Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795.https://doi.org/10.1001/jama.285.6.785
Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287. https://doi.org/10.1016/s0140-6736(10)62349-5
Article CAS PubMed PubMed Central Google Scholar
Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/s0140-6736(02)08761-5
Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62. https://doi.org/10.1002/jbmr.171
Sindeaux R, Figueiredo PT, de Melo NS, Guimarães AT, Lazarte L, Pereira FB, de Paula AP, Leite AF (2014) Fractal dimension and mandibular cortical width in normal and osteoporotic men and women. Maturitas 77:142–148. https://doi.org/10.1016/j.maturitas.2013.10.011
Sharma P, Pante A, Gross SA (2020) Artificial intelligence in endoscopy. Gastrointest Endosc 91:925–931. https://doi.org/10.1016/j.gie.2019.12.018
Lui TKL, Guo CG, Leung WK (2020) Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointest Endosc 92:11-22.e16. https://doi.org/10.1016/j.gie.2020.02.033
Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P (2019) Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol 155:1291–1299. https://doi.org/10.1001/jamadermatol.2019.1375
Article PubMed PubMed Central Google Scholar
Iannattone PA, Zhao X, VanHouten J, Garg A, Huynh T (2020) Artificial intelligence for diagnosis of acute coronary syndromes: a meta-analysis of machine learning approaches. Can J Cardiol 36:577–583. https://doi.org/10.1016/j.cjca.2019.09.013
Kavitha MS, Asano A, Taguchi A, Kurita T, Sanada M (2012) Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Med Imaging 12:1. https://doi.org/10.1186/1471-2342-12-1
Article CAS PubMed PubMed Central Google Scholar
Namatevs I, Nikulins A, Edelmers E, Neimane L, Slaidina A, Radzins O, Sudars K (2023) Modular neural networks for osteoporosis detection in mandibular cone-beam computed tomography scans. Tomography 9:1772–1786. https://doi.org/10.3390/tomography9050141
Article PubMed PubMed Central Google Scholar
McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396. https://doi.org/10.1001/jama.2017.19163
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Shim SR, Kim SJ, Lee J (2019) Diagnostic test accuracy: application and practice using R software. Epidemiol Health 41:e2019007. https://doi.org/10.4178/epih.e2019007
Article PubMed PubMed Central Google Scholar
Anantharaman R, Bhandary A, Nandakumar R, Rajesh Kumar R, Vajapeyam P (2022) Utilizing deep learning to opportunistically screen for osteoporosis from dental panoramic radiographs. IEEE Int Conf Bioinformatics Biomed (BIBM) 2022:2969–2976. https://doi.org/10.1109/BIBM55620.2022.9995187
Singh Y, Atulkar V, Ren J, Yang J, Fan H, Latecki LJ, Ling H (2021) Osteoporosis prescreening and bone mineral density prediction using dental panoramic radiographs. Annu Int Conf IEEE Eng Med Biol Soc 2021:2700–2703. https://doi.org/10.1109/embc46164.2021.9630183
Aliaga I, Vera V, Vera M, García E, Pedrera M, Pajares G (2020) Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artif Intell Med 103:101816. https://doi.org/10.1016/j.artmed.2020.101816
Alzubaidi MA, Otoom M (2020) A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs. Comput Methods Programs Biomed 188:105301. https://doi.org/10.1016/j.cmpb.2019.105301
Ren J, Fan H, Yang J, Ling H (2020) Detection of trabecular landmarks for osteoporosis prescreening in dental panoramic radiographs. Annu Int Conf IEEE Eng Med Biol Soc 2020:2194–2197. https://doi.org/10.1109/embc44109.2020.9175281
Chu P, Bo C, Liang X, Yang J, Megalooikonomou V, Yang F, Huang B, Li X, Ling H (2018) Using octuplet Siamese network for osteoporosis analysis on dental panoramic radiographs. Annu Int Conf IEEE Eng Med Biol Soc 2018:2579–2582. https://doi.org/10.1109/embc.2018.8512755
Machado LF (2023) Mandible-focused osteoporosis risk assessment using dental panoramic radiography and artificial intelligence models. Universidade de São Paulo. https://doi.org/10.11606/T.59.2023.tde-17082023-112055
Nakamoto T, Taguchi A, Kakimoto N (2022) Osteoporosis screening support system from panoramic radiographs using deep learning by convolutional neural network. Dentomaxillofac Radiol 51:20220135. https://doi.org/10.1259/dmfr.20220135
Article PubMed PubMed Central Google Scholar
Sukegawa S, Fujimura A, Taguchi A et al (2022) Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates. Sci Rep 12:6088. https://doi.org/10.1038/s41598-022-10150-x
Article CAS PubMed PubMed Central Google Scholar
Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J (2020) Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J Clin Med 9:392. https://doi.org/10.3390/jcm9020392
Article CAS PubMed PubMed Central Google Scholar
Hwang JJ, Lee JH, Han SS, Kim YH, Jeong HG, Choi YJ, Park W (2017) Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofac Radiol 46:20170006. https://doi.org/10.1259/dmfr.20170006
Article PubMed PubMed Central Google Scholar
Kavitha MS, An SY, An CH, Huh KH, Yi WJ, Heo MS, Lee SS, Choi SC (2015) Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral Surg Oral Med Oral Pathol Oral Radiol 119:346–356. https://doi.org/10.1016/j.oooo.2014.11.009
Kavitha MS, Asano A, Taguchi A, Heo MS (2013) The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis. Imaging Sci Dent 43:153–161. https://doi.org/10.5624/isd.2013.43.3.153
Article PubMed PubMed Central Google Scholar
Kavitha MS, Ganesh Kumar P, Park SY, Huh KH, Heo MS, Kurita T, Asano A, An SY, Chien SI (2016) Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches. Dentomaxillofac Radiol 45:20160076. https://doi.org/10.1259/dmfr.20160076
Article PubMed PubMed Central Google Scholar
Roberts MG, Graham J, Devlin H (2013) Image texture in dental panoramic radiographs as a potential biomarker of osteoporosis. IEEE Trans Biomed Eng 60:2384–2392. https://doi.org/10.1109/tbme.2013.2256908
Roberts MG, Graham J, Devlin H (2010) Improving the detection of osteoporosis from dental radiographs using active appearance models. IEEE Int Symp Biomed Imaging: From Nano to Macro 2010:440–443. https://doi.org/10.1109/ISBI.2010.5490314
留言 (0)