Mitochondrial dysfunction in kidney stones and relief of kidney stones after reducing mtROS

Gadzhiev N, Prosyannikov M, Malkhasyan V, Akopyan G, Somani B, Sivkov A, Apolikhin O, Kaprin A (2021) Urolithiasis prevalence in the Russian Federation: analysis of trends over a 15-year period. World J Urol 39:3939–3944. https://doi.org/10.1007/s00345-021-03729-y

Article  PubMed  Google Scholar 

Karagiannis A, Skolarikos A, Alexandrescu E et al (2017) Epidemiologic study of urolithiasis in seven countries of South-Eastern Europe: S.E.G.U.R. 1 study. Arch Ital Urol Androl 89:173–177. https://doi.org/10.4081/aiua.2017.3.173

Article  PubMed  Google Scholar 

Wang Q, Wang Y, Yang C, Wang J, Shi Y, Wang H, Zhang L, Zhao MH (2023) Trends of Urolithiasis in China: a national study based on hospitalized patients from 2013 to 2018. Kidney Dis (Basel) 9:49–57. https://doi.org/10.1159/000527967

Article  CAS  PubMed  Google Scholar 

Lang J, Narendrula A, El-Zawahry A, Sindhwani P, Ekwenna O (2022) Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur Urol Open Sci 35:37–46. https://doi.org/10.1016/j.euros.2021.10.008

Article  PubMed  PubMed Central  Google Scholar 

Abufaraj M, Xu T, Cao C et al (2021) Prevalence and Trends in kidney stone among adults in the USA: analyses of national health and nutrition examination survey 2007–2018 data. Eur Urol Focus 7:1468–1475. https://doi.org/10.1016/j.euf.2020.08.011

Article  PubMed  Google Scholar 

Peerapen P, Thongboonkerd V (2023) Kidney stone prevention. Adv Nutr 14:555–569. https://doi.org/10.1016/j.advnut.2023.03.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kachkoul R, Touimi GB, El Mouhri G, El Habbani R, Mohim M, Lahrichi A (2023) Urolithiasis: history, epidemiology, aetiologic factors and management. Malays J Pathol 45:333–352

CAS  PubMed  Google Scholar 

Stern KL, Gao T, Antonelli JA et al (2019) Association of patient age and gender with kidney stone related quality of life. J Urol 202:309–313. https://doi.org/10.1097/JU.0000000000000291

Article  PubMed  Google Scholar 

Annesley SJ, Fisher PR (2019) Mitochondria in health and disease. Cells 8:680. https://doi.org/10.3390/cells8070680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma P, Sampath H (2019) Mitochondrial DNA integrity: role in health and disease. Cells 8:100. https://doi.org/10.3390/cells8020100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan C, Duanmu X, Zeng L, Liu B, Song Z (2019) Mitochondrial DNA: distribution, mutations, and elimination. Cells 8:379. https://doi.org/10.3390/cells8040379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS (2016) Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 25:119–146. https://doi.org/10.1089/ars.2016.6665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung KW, Dhillon P, Huang S et al (2019) Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab 30:784–799e5. https://doi.org/10.1016/j.cmet.2019.08.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maekawa H, Inoue T, Ouchi H et al (2019) Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney Injury. Cell Rep 29:1261–1273e6. https://doi.org/10.1016/j.celrep.2019.09.050

Article  CAS  PubMed  Google Scholar 

Xiao L, Xu X, Zhang F et al (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311. https://doi.org/10.1016/j.redox.2016.12.022

Article  CAS  PubMed  Google Scholar 

Liu H, Ye T, Yang X et al (2019) H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine 50:366–378. https://doi.org/10.1016/j.ebiom.2019.10.059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao M, Wang Y, Li L et al (2021) Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 11:1845–1863. https://doi.org/10.7150/thno.50905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan Q, Hu Q, Li G, Qi Q, Song Z, Shu J, Liang H, Liu H, Hao Z (2023) NEAT1 regulates calcium oxalate crystal-induced renal tubular oxidative injury via miR-130/IRF1. Antioxid Redox Signal 38:731–746. https://doi.org/10.1089/ars.2022.0008

Article  CAS  PubMed  Google Scholar 

Zhang T, Nie Y, Gu J, Cai K, Chen X, Li H, Wang J (2021) Corrigendum: identification of mitochondrial-related prognostic biomarkers associated with primary bile acid biosynthesis and tumor microenvironment of hepatocellular carcinoma. Front Oncol 11:843623. https://doi.org/10.3389/fonc.2021.843623

Article  PubMed  Google Scholar 

Duan X, Kong Z, Mai X et al (2018) Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 16:414–425. https://doi.org/10.1016/j.redox.2018.03.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Duan C, Yang X, Liu J, Deng Y, Tiselius HG, Ye Z, Wang T, Xing J, Xu H (2023) Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation. Signal Transduct Target Ther 8:38. https://doi.org/10.1038/s41392-022-01232-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Yang X, Tang K et al (2020) Sulforaphane elicts dual therapeutic effects on renal inflammatory injury and crystal deposition in calcium oxalate nephrocalcinosis. Theranostics 10:7319–7334. https://doi.org/10.7150/thno.44054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, Kestenbaum B (2018) Proximal tubular secretory clearance: a neglected partner of kidney function. Clin J Am Soc Nephrol 13:1291–1296. https://doi.org/10.2215/CJN.12001017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao J, Li C, Wu F, Wang Y, Zhu J, Wen C (2024) The relationship between kidney disease and mitochondria: a bibliometric study. Ren Fail 46:2302963. https://doi.org/10.1080/0886022X.2024.2302963

Article  PubMed  PubMed Central  Google Scholar 

Srivastava A, Tomar B, Sharma D, Rath SK (2023) Mitochondrial dysfunction and oxidative stress: role in chronic kidney disease. Life Sci 319:121432. https://doi.org/10.1016/j.lfs.2023.121432

Article  CAS  PubMed  Google Scholar 

Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M (2021) Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 320:C465–C482. https://doi.org/10.1152/ajpcell.00502.2020

Article  CAS  PubMed  Google Scholar 

Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629–646. https://doi.org/10.1038/nrneph.2017.107

Article  CAS 

留言 (0)

沒有登入
gif