Preparation and Biodistribution Assessment of 177Lu-curcumin as a Possible Therapeutic Agent

Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17:71–80.

PubMed  Google Scholar 

Villegas I, Sánchez-Fidalgo S, de la Alarcon C. New mechanisms and therapeutic potential of curcumin for colorectal cancer. Mol Nutr Food Res. 2008;52:1040–61.

PubMed  Google Scholar 

Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.

PubMed  Google Scholar 

Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an old-age disease with an age-old solution. Cancer Lett. 2008;267:133–64.

PubMed  Google Scholar 

Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer. 2000;31:243–305.

Google Scholar 

Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med. 2006;47:492–501.

PubMed  Google Scholar 

Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–37.

PubMed  Google Scholar 

Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481.

PubMed  PubMed Central  Google Scholar 

Hricak H, Adelstein SJ, Conti PS. Advancing nuclear medicine through innovation. Washington (DC). Committee on State of the Science of Nuclear Medicine, National Research Council; 2007.

Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15:845.

PubMed  PubMed Central  Google Scholar 

Wessels BW, Meares CF. Physical and chemical properties of radionuclide therapy. Semin Rdiat Oncol. 2000;10:115–22.

Google Scholar 

Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

PubMed  Google Scholar 

Neves M, Reis MF, Waerenborgh F, Martinho E, Patricio L. Holmium-166: a potential lanthanide element in radiotherapy. Inorganica Chim Acta. 1987;140:359–60.

Google Scholar 

Das T, Chakraborty S, Banerjee S, Nair KV, Chirayil V, Venkatesh M, et al. 177Lu-EDTMP: a new radiopharmaceutical for palliation of bone pain in cancer patients with skeletal metastases. Dr Homi Bhabha Centenary Year. 2009;305:2–11.

Google Scholar 

Dvoráková Z. Production and chemical processing of Lu-177 for nuclear medicine at the Munich research reactor FRM-II (Doctoral dissertation, Technische Universität München). 2007.

Horwitz EP, McAlister DR, Bond AH, Barrans RE, Williamson JM. A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot. 2005;63:23–36.

PubMed  Google Scholar 

Park H, Kwon D, Cha Y, Nam S, Kim T, Han J, et al. Laser isotope separation of 176Yb for medical applications. J Korean Phys Soc. 2006;49:382–6.

Google Scholar 

Song YM, Xu JP, Ding L, Hou Q, Liu JW, Zhu ZL. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1, 10-phenanthroline-5, 6-dione. J Inorg Biochem. 2009;103:396–400.

PubMed  Google Scholar 

Mawani Y, Orvig C. Improved separation of the curcuminoids, syntheses of their rare earth complexes, and studies of potential antiosteoporotic activity. J Inorg Biochem. 2014;132:52–8.

PubMed  Google Scholar 

Asti M, Ferrari E, Croci S, Atti G, Rubagotti S, Iori M, et al. Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorg Chem. 2014;53:4922–33.

PubMed  Google Scholar 

Rubagotti S, Croci S, Ferrari E, Iori M, Capponi PC, Lorenzini L, et al. Affinity of nat/68Ga-labelled curcumin and curcuminoid complexes for β-amyloid plaques: towards the development of new metal-curcumin based radiotracers. Int J Mol Sci. 2016;17:1480.

PubMed  PubMed Central  Google Scholar 

Marx S, Harfensteller M, Zhernosekov K, Nikula T, inventors;, ITM ISOTOPEN TECHNOLOGIEN MUENCHEN AG, assignee. Method of manufacturing non-carrier-added high-purity 177Lu compounds as well as non-carrier-added 177Lu compounds. United States patent US 9,816,156. 2017.

Balasubramanian P. Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target. J Radioanal Nucl Chem. 1994;185:305–10.

Google Scholar 

Hashimoto K, Matsuoka H, Uchida S. Production of no-carrier-added 177Lu via the 176Yb (n, γ) 177Yb→177Lu process. J Radioanal Nucl Chem. 2003;255:575–9.

Google Scholar 

Lahiri S, Nayak D, Nandy M, Das NR. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl Radiat Isot. 1998;49:911–3.

Google Scholar 

Kumrić K, Trtić-Petrović T, Koumarianou E, Archimandritis S, Čomor JJ. Supported liquid membrane extraction of 177Lu (III) with DEHPA and its application for purification of 177Lu-DOTA-lanreotide. Sep Purif Technol. 2006;51:310–7.

Google Scholar 

Watanabe S, Hashimoto K, Watanabe S, Iida Y, Hanaoka H, Endo K, et al. Production of highly purified no-carrier-added 177 Lu for radioimmunotherapy. J Radioanal Nucl Chem. 2015;303:935–40.

Google Scholar 

Knapp FF Jr, Mirzadeh S, Beets AL, Du M. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncologyand interventional cardiology. J Radioanal Nucl Chem. 2005;263:503–9.

Google Scholar 

Van So L, Morcos N, Zaw M, Pellegrini P, Greguric I. Alternative chromatographic processes for no-carrier added 177 Lu radioisotope separation: part I. Multi-column chromatographic process for clinically applicable. J Radioanal Nucl Chem. 2008;277:663–73.

Google Scholar 

Le VS, Morcos N, Zaw M. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation. Part II. The conventional column chromatographic separation combined with HPLC for high purity. J Radioanal Nucl Chem. 2008;277:675–83.

Google Scholar 

Lebedev NA, Novgorodov AF, Misiak R, Brockmann J, Rösch F. Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n, γ)177Yb→ 177Lu process. Appl Radiat Isot. 2000;53:421–5.

PubMed  Google Scholar 

Bilewicz A, Żuchowska K, Bartoś B. Separation of Yb as YbSO 4 from the 176 yb target for production of 177 Lu via the 176 yb (n, γ) 177 Yb→ 177 Lu process. J Radioanal Nucl Chem. 2009;280:167–9.

Google Scholar 

Chakravarty R, Das T, Dash A, Venkatesh M. An electro-amalgamation approach to isolate no-carrier-added 177Lu from neutron irradiated Yb for biomedical applications. Nucl Med Biol. 2010;37:811–20.

PubMed  Google Scholar 

Salek N, Shamsaei M, Ghannadi Maragheh M, Shirvani Arani S, Bahrami Samani A. Comparative studies of extraction chromatography and electro-amalgamation separation to produce no-carrier added 177Lu by Tehran research reactor. Iran J Nucl Med. 2017;25:23–33.

Google Scholar 

Salek N, Mehrabi M, Shirvani Arani S, Bahrami Samani A, Erfani M, Vosoghi S, et al. Production, quality control, and determination of human absorbed dose of no carrier added 177Lu-risedronate for bone pain palliation therapy. J Label Compd Radiopharm. 2017;60:20–9.

Google Scholar 

Salek N, Shamsaei M, Maragheh MG, Arani SS, Samani AB. Production and quality control 177Lu (NCA)—DOTMP as a potential agent for bone pain palliation. J Appl Clin Med Phys. 2016;17:128–39.

PubMed  PubMed Central  Google Scholar 

Mollayi S, Tamhidi S, Hashempour H, Ghassempour AJ. Recycling preparative high performance liquid chromatography for the separation of curcumin from curcuminoids in curcuma longa L. Acta Chromatogr. 2015;27:387–98.

Google Scholar 

B Council. Guidelines on the use of living animals in scientific investigations. Biological Council, UK, 2nd edn. 1987.

Arabieh M, Platas-Iglesias C. A density functional theory study on the interaction of dipicolinic acid with hydrated Fe2 + cation. Comput Theor Chem. 2016;1090:134–46.

Google Scholar 

Varadwaj PR, Varadwaj A, Peslherbe GH, Marques HM. Conformational analysis of 18-azacrown-6 and its bonding with late first transition series divalent metals: insight from DFT combined with NPA and QTAIM analyses. J Phys Chem A. 2011;115:13180–90.

PubMed  Google Scholar 

Stewart JJ. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model. 2007;13:1173–213.

PubMed  PubMed Central  Google Scholar 

Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Mol. 2015;20:14293–311.

Google Scholar 

Davis John V, Krishnankutty K. Synthesis, characterization and antitumour activities of some synthetic curcuminoid analogues and their copper complexes. Transition Met Chem. 2005;30:229–33.

Google Scholar 

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination compounds. Incorporated: Wiley; 1997.

Google Scholar 

Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, et al. Curcumin: a new candidate for melanoma therapy? IJC. 2016;139:1683–95.

Google Scholar 

Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11:2376.

PubMed  PubMed Central  Google Scholar 

Ryu EK, Choe YS, Lee KH, Choi Y, Kim BT. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for β-amyloid plaque imaging. J Med Chem. 2006;49:6111–9.

PubMed  Google Scholar 

Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J. 2009;11:495–510.

PubMed  PubMed Central  Google Scholar 

Rokka J, Snellman A, Zona C, La Ferla B, Nicotra F, Salmona M, et al. Synthesis and evaluation of a 18F-curcumin derivate for β-amyloid plaque imaging. Bioorg Med Chem. 2014;22:2753–62.

PubMed  Google Scholar 

Lee I, Yang J, Lee JH, Choe YS. Synthesis and evaluation of 1-(4-[18F] fluoroethyl)-7-(4′-methyl) curcumin with improved brain permeability for β-amyloid plaque imaging. Bioorg Med Chem. 2011;21:5765–9.

Google Scholar 

Shin S, Koo HJ, Lee I, Choe YS, Choi JY, Lee KH, et al. Synthesis and characterization of 18 F-labeled hydrazinocurcumin derivatives for tumor imaging. RSC Adv. 2015;5:96733–45.

Google Scholar 

留言 (0)

沒有登入
gif