Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Green AR (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061
Article CAS PubMed Google Scholar
Hole PS, Darley RL, Tonks A (2011) Do reactive oxygen species play a role in myeloid leukemias? Blood. J Am Soc Hematol 117(22):5816–5826
Bjørn ME et, Hasselbalch HC (2015) The role of reactive oxygen species in myelofibrosis and related neoplasms. Mediators of inflammation 2015.
Allegra A, Pioggia G, Tonacci A, Casciaro M, Musolino C, Gangemi S (2020) Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR–ABL-Negative Myeloproliferative Neoplasm. Antioxidants 9(11): 1037
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem et cell Biology 39(1):44–84
Burdon RH, Gill V, Rice-Evans C (1989) Cell proliferation and oxidative stress free radical research communications. 7(3–6):149–159
Sallmyr A, Fan J, et Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270(1):1–9
Article CAS PubMed Google Scholar
Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á (2018) Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. J Experimental Clin Cancer Res 37(1):1–18
Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222(1):17–22
Article CAS PubMed Google Scholar
Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circul Res 103(2):212–220
Zhu QS, Xia L, Mills GB, Lowell CA, Touw IP, Corey SJ (2006) G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-akt and contributes to myeloid cell growth. Blood 107(5):1847–1856
Article CAS PubMed PubMed Central Google Scholar
Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93(9):2928–2935
Article CAS PubMed Google Scholar
Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D, Sattler M (2005) Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105(4):1717–1723
Article CAS PubMed Google Scholar
Hole PS, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills RK, Darley RL (2013) Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood J Am Soc Hematol 122(19):3322–3330
Novotna B, Bagryantseva Y, Siskova M, Neuwirtova R (2009) Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome. Leuk Res 33(2):340–343
Article CAS PubMed Google Scholar
Marty C, Lacout C, Droin N, Le Couédic JP, Ribrag V, Solary E, Vainchenker W, Villeval JL, Plo I (2013) A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia 27:2187–2195
Article CAS PubMed Google Scholar
Hurtado-Nedelec M, Csillag-Grange MJ, Boussetta T, Belambri SA, Fay M, Cassinat B, Gougerot-Pocidalo MA, Dang PM, El-Benna J (2013) Increased reactive oxygen species production and p47phox phosphorylation in neutrophils from myeloproliferative disorders patients with JAK2 (V617F) mutation. Haematologica 98:1517–1524 [CrossRef] [PubMed]
Article CAS PubMed PubMed Central Google Scholar
Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K, Sattler M (2006) Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 281(26):18177–18183
Article CAS PubMed Google Scholar
Chen Q, Lu P, Jones AV, Cross NC, Silver RT, Wang YL (2007) Amplification refractory mutation system, a highly sensitive and simple polymerase chain reaction assay, for the detection of JAK2 V617F mutation in chronic myeloproliferative disorders. J Mol Diagn 9(2):272–276
Article CAS PubMed PubMed Central Google Scholar
Cao G, Prior RL (1999) Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol 299:50–62
Article CAS PubMed Google Scholar
Zaman ZA, Fielden P, Frost PG (1993) Simultaneous determination of vitamins a and E and carotenoids in plasma by reversed-phase HPLC in elderly and younger subjects. Clin Chem 39(11):2229–2234
Article CAS PubMed Google Scholar
Jagota SK, Dani HM (1982) A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem 127(1):178–182
Article CAS PubMed Google Scholar
Aebi H (1974) Catalases. Methods Enzymatic Anal 2:673–684
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358
Article CAS PubMed Google Scholar
Nouroozzadeh J, Tajaddinisarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220(2):403–409
Article CAS PubMed Google Scholar
Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol (186): 464–478
Moisă C, Găman MA, Pascu EG, Assani AD, Drăgusin OC, Epîngeac ME, Găman AM (2018) The role of oxidative stress in essential thrombocythemia. Arch Balk Med Union 53(1):70–75
Antoszewska-Smith J, Pawlowska E, Błasiak J (2017) Reactive oxygen species in BCR-ABL1 -expressing cells–relevance to chronic myeloid leukemia. Acta Biochim Pol 64(1):1–10
Durmus A, Mentese A, Yilmaz M, Sumer A, Akalin I, Topal C, Alver A (2013) Increased oxidative stress in patients with essential thrombocythemia. Eur Rev Med Pharmacol Sci 17(21):2860–2866
Durmus A, Mentese A, Yilmaz M, Sumer A, Akalin I, Topal C, Alver A (2014) The thrombotic events in polycythemia vera patients may be related to increased oxidative stress. Med Principles Pract 23(3):253–258
Vener C, Novembrino C, Catena FB, Fracchiolla NS, Gianelli U, Savi F, Menegatti M (2010) Oxidative stress is increased in primary and post – polycythemia vera myelofibrosis. Exp Hematol 38(11):1058–1065
Article CAS PubMed Google Scholar
Musolino C, Allegra A, Saija A, Alonci A, Russo S, Spatari G, Penna G, Gerace D, Cristani M, David A, Saitta S (2012) Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin Biochem 45(16):1439–1443
Article CAS PubMed Google Scholar
Moisa C, Gaman MA, Diaconu CC, Gaman AM (2019) Oxidative stress levels, JAK2V617F mutational status and thrombotic complications in patients with essential thrombocythemia. Rev Chim 70(8):2822–2825
Battisti V, Maders LD, Bagatini MD, Santos KF, Spanevello RM, Maldonado PA et, Morsch VM (2008) Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clin Biochem 41(7):511–518
Article CAS PubMed Google Scholar
Esfahani A, Ghoreishi Z, Nikanfar A, Sanaat Z, Ghorbanihaghjo A (2012) Influence of chemotherapy on the lipid peroxidation and antioxidant status in patients with acute myeloid leukemia. Acta Medica Iranica 50(7):454
Ammar M, Ben Mahmoud L, Medhaffar M, Ghozzi H, Sahnoun Z, Hakim A, Mseddi M, Elloumi M, Zeghal K (2020) Relationship of oxidative stress in the resistance to imatinib in Tunisian patients with chronic myeloid leukemia: a retrospective study. J Clin Lab Anal 34(2):e23050
留言 (0)