Action of dithiocarbimates salts on the honey bee and its pathogen Nosema ceranae

Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC (2022) The versatility in the applications of dithiocarbamates. Int J Mol Sci 23:1317–1353. https://doi.org/10.3390/ijms23031317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albuini-Oliveira NM, Rubinger MMM, Guilardi S, Souza RAC, Ellena J, Alvarez N, Tavares EC, Zacchi CHC, Vidigal AEC, Lima MS, Zambolim L (2020) New allyldithiocarbimate salts: synthesis, structure and antifungal activity. J Mol Struct 1214:128149. https://doi.org/10.1016/j.molstruc.2020.128149

Article  CAS  Google Scholar 

Alves LC, Rubinger MM, Lindemann RH, Perpétuo GJ, Janczak J, Miranda LD, Zambolim L, Oliveira MR (2009) Syntheses, crystal structure, spectroscopic characterization and antifungal activity of new N-R-sulfonyldithiocarbimate metal complexes. J Inorg Biochem 103:1045–1053. https://doi.org/10.1016/j.jinorgbio.2009.04.018

Article  CAS  PubMed  Google Scholar 

Amim RS, Oliveira MRL, Janczak J, Rubinger MMM, Vieira LMM, Alves LC, Zambolim L (2011) Syntheses, characterization, crystal structure and antifungal activity of four tetraphenylphosphonium bis(N-R-sulfonyldithiocarbimato)zincate(II) salts. Polyhedron 30:683–689. https://doi.org/10.1016/j.poly.2010.12.003

Article  CAS  Google Scholar 

Anderson DL, Giacon H (1992) Reduced pollen collection by honey bee (Hymenoptera: Apidae) colonies infected with Nosema apis and Sacbrood virus. J Econ Ent 85:47–51

Article  Google Scholar 

Bahreini R, Nasr M, Docherty C, de Herdt O, Feindel D, Muirhead S (2022) In vivo inhibitory assessment of potential antifungal agents on Nosema ceranae proliferation in honey bees. Pathogens 11:1375. https://doi.org/10.3390/pathogens11111375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botías C, Martín-Hernández R, Barrios L, Garrido‐Bailón E, Nanetti A, Meana A, Higes M (2012) Nosema spp. parasitization decreases the effectiveness of acaricide strips (Apivar®) in treating varroosis of honey bee (Apis mellifera iberiensis) colonies. Environ Microbiol Rep 4:57–65. https://doi.org/10.1111/j.1758-2229.2011.00299.x

Article  CAS  PubMed  Google Scholar 

Burnham AJ (2019) Scientific advances in controlling Nosema ceranae (Microsporidia) infections in honey bees (Apis mellifera). Front Vet Sci 6:79. https://doi.org/10.3389/fvets.2019.00079

Article  PubMed  PubMed Central  Google Scholar 

Cai JX, Zhou ZH, Zhao GF, Tang CC (2002) Dramatic rate acceleration of the Baylis-Hillman reaction in homogeneous medium in the presence of water. Org Lett 4:4723–4725. https://doi.org/10.1021/ol027197f

Article  CAS  PubMed  Google Scholar 

Campanale C, Triozzi M, Ragonese A, Losacco D, Massarelli C (2023) Dithiocarbamates: Properties, methodological approaches and challenges to their control. Toxics 11:851. https://doi.org/10.3390/toxics11100851

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castilhos D, Bergamo GC, Gramacho KP, Gonçalves LS (2019) Bee colony losses in Brazil: a 5-year online survey. Apidologie 50:263–272. https://doi.org/10.1007/s13592-019-00642-7

Article  Google Scholar 

Castro RA, Oliveira MRL, Janczack J, Rubinger MMM (2017) Syntheses and characterization of novel heteroleptic nickel complexes with dithiocarbimates and trithiocarbimates. Inorg Chim Acta 462:195–203. https://doi.org/10.1016/j.ica.2017.03.028

Article  CAS  Google Scholar 

Chaimanee V, Kasem A, Nuanjohn T, Boonmee T, Siangsuepchart A, Malaithong W, Sinpoo C, Disayathanoowat T, Pettis JS (2021) Natural extracts as potential control agents for Nosema ceranae infection in honeybees, Apis mellifera. J Invert Pathol 186:107688. https://doi.org/10.1016/j.jip.2021.107688

Article  CAS  Google Scholar 

Cunha LMG, Rubinger MMM, Sabino JR, Visconte LLY, Oliveira MRL (2010) Syntheses, crystal structure and spectroscopic characterization of bis(dithiocarbimate)-nickel(II)-complexes: a new class of vulcanization accelerators. Polyhedron 29:2278–2282. https://doi.org/10.1016/j.poly.2010.04.026

Article  CAS  Google Scholar 

Cunha LMG, Rubinger MMM, Oliveira MRL, Tavares EC, Sabino, JR, Pacheco EBAV, Visconte LLY (2012) Syntheses, crystal structure and spectroscopic characterization of bis(dithiocarbimato)-zinc(II)-complexes: a new class of vulcanization accelerators. Inorganica Chimica Acta 383:194-198. https://doi.org/10.1016/j.ica.2011.11.002

Dias PJ, Teixeira MC, Telo JP, Sa-Correia I (2010) Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach. OMICS 14:211–227. https://doi.org/10.1089/omi.2009.0134

Article  CAS  PubMed  Google Scholar 

Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, Martín-Hernández R, Botías C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RFA, Conte YL, Alaux C (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS ONE 7:e37017. https://doi.org/10.1371/journal.pone.0037017

Article  CAS  PubMed  PubMed Central  Google Scholar 

EPILOBEE Consortium, Chauzat MP, Jacques A, Laurent M, Bougeard S, Hendrikx P, Ribière-Chabert M (2016) Risk indicators affecting honeybee colony survival in Europe: one year of surveillance. Apidologie 47:348–378. https://doi.org/10.1007/s13592-016-0440-z

Article  Google Scholar 

European Commission (2009) Commission Regulation No 470/2009 of the European Parliament and of the Council of 6 May 2009 laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council. Official Journal of the European Union, L152/11L152/22

Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotecnol 35:1039–1042

Article  Google Scholar 

Ferreira M, Fernandes L, Sá MM (2009) A highly efficient and general method for the preparation of (Z)-allylic bromides derived from Morita–Baylis–Hillman adducts. J Braz Chem Soc 20:564–568

Article  CAS  Google Scholar 

Fries I, Feng F, Da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n sp (Microspora, Nosematidae), morphological and molecular characterization of a Microsporidia parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365. https://doi.org/10.1016/S0932-4739(96)80059-9

Article  Google Scholar 

Fries I, Chauzat MP, Chen YP, Doublet V, Genersch E, Gisder S, Higes M, McMahon DP, Martín-Hernandez R, Natsopoulou M, Paxton RJ, Tanner G, Webster TC, Williams GR (2013) Standard methods for Nosema research. J Apicult Res 52:1–28. https://doi.org/10.3896/IBRA.1.52.1.14

Article  Google Scholar 

Glavinic U, Blagojevic J, Ristanic M, Stevanovic J, Lakic N, Mirilovic M, Stanimirovic Z (2022) Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects 13:574. https://doi.org/10.3390/insects13070574

Article  PubMed  PubMed Central  Google Scholar 

Goblirsch M (2018) Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 49:131–150. https://doi.org/10.1007/s13592-017-0535-1

Article  Google Scholar 

Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE 8:e58165. https://doi.org/10.1371/journal.pone.0058165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomes IN, Gontijo LM, Lima MAP, Zanuncio JS, Resende HC (2023) The survival and flight capacity of commercial honeybees and endangered stingless bees are impaired by common agrochemicals. Ecotoxicology 32:937–947. https://doi.org/10.1007/s10646-023-02699-8

Article  CAS  PubMed  Google Scholar 

Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. https://doi.org/10.1126/science.1255957

Article  CAS  PubMed  Google Scholar 

Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, Blitzer EJ, Poveda K, Loeb G, Danforth BN (2019) Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363:282–284. https://doi.org/10.1126/science.aat6016

Article  CAS  PubMed  Google Scholar 

Grant KJ, DeVetter L, Melathopoulos A (2021) Honey bee (Apis mellifera) colony strength and its effects on pollination and yield in highbush blueberries (Vaccinium corymbosum). PeerJ 9:e11634. https://doi.org/10.7717/peerj.11634

Article  PubMed  PubMed Central  Google Scholar 

Guimarães-Cestaro L, Serrão JE, Alves MLTM, Teixeira EW (2016a) A scientific note on occurrence of pathogens in colonies of honey bee Apis mellifera in Vale do Ribeira, Brazil. Apidologie 48:384–386.

留言 (0)

沒有登入
gif