NAT10 Overexpression Promotes Tumorigenesis and Epithelial–Mesenchymal Transition Through AKT Pathway in Gastric Cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–249. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018;391:1023–1075. https://doi.org/10.1016/s0140-6736(17)33326-3.

Article  PubMed  PubMed Central  Google Scholar 

Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer 2014;134:622–628. https://doi.org/10.1002/ijc.28373.

Article  CAS  PubMed  Google Scholar 

Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK et al. MODOMICS: a database of RNA modification pathways: 2017 update. Nucleic Acids Res 2018;46:D303-d307. https://doi.org/10.1093/nar/gkx1030.

Article  CAS  PubMed  Google Scholar 

Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 2020;37:270–288. https://doi.org/10.1016/j.ccell.2020.02.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 2018;175:1872–1886.e1824. https://doi.org/10.1016/j.cell.2018.10.030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DL. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015;43:2242–2258. https://doi.org/10.1093/nar/gkv075.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balmus G, Larrieu D. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun 2018;9:1700. https://doi.org/10.1038/s41467-018-03770-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang ZX, Zhang WN, Sun YY, Li YH, Xu ZM, Fu WN. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis. Onco Targets Ther 2018;11:1323–1331. https://doi.org/10.2147/ott.s156582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan TZ, Miow QH, Huang RY, Wong MK, Ye J, Lau JA et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med 2013;5:1051–1066. https://doi.org/10.1002/emmm.201201823.

Article  CAS  PubMed  Google Scholar 

Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 2009;315:1653–1667. https://doi.org/10.1016/j.yexcr.2009.03.007.

Article  CAS  PubMed  Google Scholar 

Zhang H, Hou W, Wang HL, Liu HJ, Jia XY, Zheng XZ et al. GSK-3β-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin Cancer Res 2014;20:4717–4729. https://doi.org/10.1158/1078-0432.ccr-13-3477.

Article  CAS  PubMed  Google Scholar 

Li Q, Liu X, Jin K, Lu M, Zhang C, Du X et al. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer 2017;17:605. https://doi.org/10.1186/s12885-017-3570-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma R, Chen J, Jiang S, Lin S, Zhang X, Liang X. Up regulation of NAT10 promotes metastasis of hepatocellular carcinoma cells through epithelial-to-mesenchymal transition. Am J Transl Res 2016;8:4215–4223.

CAS  PubMed  PubMed Central  Google Scholar 

Xiang Z, Zhou ZJ, Xia GK, Zhang XH, Wei ZW, Zhu JT et al. A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis. Oncogene 2017;36:5122–5133. https://doi.org/10.1038/onc.2017.108.

Article  CAS  PubMed  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545–15550. https://doi.org/10.1073/pnas.0506580102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003;34:267–273. https://doi.org/10.1038/ng1180.

Article  CAS  PubMed  Google Scholar 

Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008;27:5497–5510. https://doi.org/10.1038/onc.2008.245.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003;4:257–262. https://doi.org/10.1016/s1535-6108(03)00248-4.

Article  CAS  PubMed  Google Scholar 

Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016;166:21–45. https://doi.org/10.1016/j.cell.2016.06.028.

Article  CAS  PubMed  Google Scholar 

Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer 2018;18:128–134. https://doi.org/10.1038/nrc.2017.118.

Article  CAS  PubMed  Google Scholar 

Karimi Roshan M, Soltani A, Soleimani A, Rezaie Kahkhaie K, Afshari AR, Soukhtanloo M. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie 2019;165:229–234. https://doi.org/10.1016/j.biochi.2019.08.003.

Article  CAS  PubMed  Google Scholar 

Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 2015;9:317–324. https://doi.org/10.1080/19336918.2015.1016686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J, Zhu H, Wu J, Chen W, Guan X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am J Transl Res 2018;10:256–264.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Liu J, Yan S, Huang K, Bai Y, Zheng S. High expression of N-acetyltransferase 10: a novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma. Int J Clin Exp Pathol 2015;8:14765–14771.

CAS  PubMed  PubMed Central  Google Scholar 

Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161–174. https://doi.org/10.1038/nrc745.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif