Binding Promiscuity of Therapeutic Factor VIII

Thromb Haemost
DOI: 10.1055/a-2358-0853

Alejandra Reyes Ruiz

1   Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France

,

Aishwarya S. Bhale

2   Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

,

Krishnan Venkataraman

2   Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

,

Jordan D. Dimitrov

1   Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France

,

Sébastien Lacroix-Desmazes

1   Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France

› Author Affiliations Funding This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Université Paris Cité, Assistance Publique des Hôpitaux de Paris, and by grants from the Indo-French Center for Promotion of Advanced Research (CEFIPRA, Reference No. IFC//7126/ Hemophilia) and from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement n°859974 (EDUC8). The work at VIT Vellore was supported by the VIT International research fund (Ref No. VIN/2022–23/011 dated 9 February 2023). A.R.R. was recipient of fellowships from Fondation de la Recherche Médicale (n°FDT202304016725, FRM, Paris) and MSCA-ITN EDUC8 (n°859974).
› Further Information Also available at   SFX Search  Buy Article Permissions and Reprints


Abstract

The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.

Keywords binding promiscuity - protein therapeutics - factor VIII - FVIII interactome - pharmacokinetics - immunogenicity Authors' Contribution

A.R.R., J.D.D., and S.L-.D. contributed in writing the manuscript. A.R.R., A.S.B., and K.V. contributed to performing literature search. A.R.R., A.S.B., K.V., J.D.D., and S.L-.D. contributed in reading and reviewing the manuscript.

Publication History

Received: 08 April 2024

Accepted: 30 June 2024

Accepted Manuscript online:
01 July 2024

Article published online:
16 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
References 1 Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Modulation of protein-protein interactions for the development of novel therapeutics. Mol Ther 2016; 24 (04) 707-718 2 Clark AJ, Adeniyi-Jones RO, Knight G. et al. Biosynthetic human insulin in the treatment of diabetes. A double-blind crossover trial in established diabetic patients. Lancet 1982; 2 (8294) 354-357 3 Gleissner CA, Klingenberg R, Staritz P. et al. Role of erythropoietin in anemia after heart transplantation. Int J Cardiol 2006; 112 (03) 341-347 4 Rao DB, Sane PG, Georgiev EL. Collagenase in the treatment of dermal and decubitus ulcers. J Am Geriatr Soc 1975; 23 (01) 22-30 5 Maloney DG, Grillo-López AJ, White CA. et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90 (06) 2188-2195 6 Kaminski MS, Estes J, Zasadny KR. et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96 (04) 1259-1266 7 Ebrahimi SB, Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat Commun 2023; 14 (01) 2411 8 Liu X, Zhang Y, Ward LD. et al. A proteomic platform to identify off-target proteins associated with therapeutic modalities that induce protein degradation or gene silencing. Sci Rep 2021; 11 (01) 15856 9 Roberts RA, Kavanagh SL, Mellor HR, Pollard CE, Robinson S, Platz SJ. Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov Today 2014; 19 (03) 341-347 10 Lenders M, Pollmann S, Terlinden M, Brand E. Pre-existing anti-drug antibodies in Fabry disease show less affinity for pegunigalsidase alfa. Mol Ther Methods Clin Dev 2022; 26: 323-330 11 Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin 2012; 33 (11) 1339-1347 12 Campbell SM, DeBartolo J, Apgar JR. et al. Combining random mutagenesis, structure-guided design and next-generation sequencing to mitigate polyreactivity of an anti-IL-21R antibody. MAbs 2021; 13 (01) 1883239 13 Liu CY, Ahonen CL, Brown ME. et al. Structure-based engineering of a novel CD3ε-targeting antibody for reduced polyreactivity. MAbs 2023; 15 (01) 2189974 14 Makowski EK, Wang T, Zupancic JM. et al. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning. Nat Biomed Eng 2024; 8 (01) 45-56 15 Srivastava A, Santagostino E, Dougall A. et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020; 26: 1-158 16 Mannucci PM. Hemophilia therapy: the future has begun. Haematologica 2020; 105 (03) 545-553 17 Kessler CM, Corrales-Medina FF, Mannucci PM, Jiménez-Yuste V, Tarantino MD. Clinical efficacy of simoctocog alfa versus extended half-life recombinant FVIII concentrates in hemophilia A patients undergoing personalized prophylaxis using a matching-adjusted indirect comparison method. Eur J Haematol 2023; 111 (05) 757-767 18 Young G, Callaghan MU, Balasa V. et al. Effects of PK-guided prophylaxis on clinical outcomes and FVIII consumption for patients with moderate to severe Haemophilia A. Haemophilia 2023; 29 (05) 1234-1242 19 Kaczmarek R, Piñeros AR, Patterson PE. et al. Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells. Blood 2023; 142 (03) 290-305 20 Doshi BS, Rana J, Castaman G. et al. B cell-activating factor modulates the factor VIII immune response in hemophilia A. J Clin Invest 2021; 131 (08) e142906 21 Arandi N, Zekavat OR, Shokrgozar N, Shahsavani A, Golmoghaddam H, Kalani M. Altered frequency of FOXP3+ regulatory T cells is associated with development of inhibitors in patients with severe hemophilia A. Int J Lab Hematol 2023; 45 (06) 953-960 22 Becker-Gotot J, Meissner M, Kotov V. et al. Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs. J Clin Invest 2022; 132 (22) e159925 23 Vollack-Hesse N, Oleshko O, Werwitzke S, Solecka-Witulska B, Kannicht C, Tiede A. Recombinant VWF fragments improve bioavailability of subcutaneous factor VIII in hemophilia A mice. Blood 2021; 137 (08) 1072-1081 24 Klamroth R, Feistritzer C, Friedrich U. et al. Pharmacokinetics, immunogenicity, safety, and preliminary efficacy of subcutaneous turoctocog alfa pegol in previously treated patients with severe hemophilia A (alleviate 1). J Thromb Haemost 2020; 18 (02) 341-351 25 Vlot AJ, Koppelman SJ, van den Berg MH, Bouma BN, Sixma JJ. The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood 1995; 85 (11) 3150-3157 26 Chiu P-L, Bou-Assaf GM, Chhabra ES. et al. Mapping the interaction between factor VIII and von Willebrand factor by electron microscopy and mass spectrometry. Blood 2015; 126 (08) 935-938 27 Drago V, Di Paola L, Lesieur C, Bernardini R, Bucolo C, Platania CBM. In-silico characterization of von Willebrand factor bound to FVIII. Appl Sci (Basel) 2022; 12: 7855 28 Fuller JR, Knockenhauer KE, Leksa NC, Peters RT, Batchelor JD. Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood 2021; 137 (21) 2970-2980 29 Yee A, Oleskie AN, Dosey AM. et al. Visualization of an N-terminal fragment of von Willebrand factor in complex with factor VIII. Blood 2015; 126 (08) 939-942 30 Dagil L, Troelsen KS, Bolt G. et al. Interaction between the a3 region of factor VIII and the TIL'E′ domains of the von Willebrand factor. Biophys J 2019; 117 (03) 479-489 31 Leyte A, van Schijndel HB, Niehrs C. et al. Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J Biol Chem 1991; 266 (02) 740-746 32 Fay PJ, Coumans JV, Walker FJ. von Willebrand factor mediates protection of factor VIII from activated protein C-catalyzed inactivation. J Biol Chem 1991; 266 (04) 2172-2177 33 Shi Q, Kuether EL, Schroeder JA. et al. Factor VIII inhibitors: von Willebrand factor makes a difference in vitro and in vivo. J Thromb Haemost 2012; 10 (11) 2328-2337 34 Lacroix-Desmazes S, Moreau A. Sooryanarayana, et al. Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med 1999; 5 (09) 1044-1047 35 Elsheikh E, Lavin M, Heck LA. et al; iPATH study group. Heterogeneity in the half-life of factor VIII concentrate in patients with hemophilia A is due to variability in the clearance of endogenous von Willebrand factor. J Thromb Haemost 2023; 21 (05) 1123-1134 36 Ogiwara K, Swystun LL, Paine AS. et al. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J Thromb Haemost 2021; 19 (03) 654-663 37 Dasgupta S, Repessé Y, Bayry J. et al. VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 2007; 109 (02) 610-612 38 Sorvillo N, Hartholt RB, Bloem E. et al. von Willebrand factor binds to the surface of dendritic cells and modulates peptide presentation of factor VIII. Haematologica 2016; 101 (03) 309-318 39 Behrmann M, Pasi J, Saint-Remy J-M, Kotitschke R, Kloft M. Von Willebrand factor modulates factor VIII immunogenicity: comparative study of different factor VIII concentrates in a haemophilia A mouse model. Thromb Haemost 2002; 88 (02) 221-229 40 Delignat S, Repessé Y, Navarrete A-M. et al. Immunoprotective effect of von Willebrand factor towards therapeutic factor VIII in experimental haemophilia A. Haemophilia 2012; 18 (02) 248-254 41 Kallas A, Kuuse S, Maimets T, Pooga M. von Willebrand factor and transforming growth factor-beta modulate immune response against coagulation factor VIII in FVIII-deficient mice. Thromb Res 2007; 120 (06) 911-919 42 Calvez T, Chambost H, d'Oiron R. et al; for FranceCoag Collaborators. Analyses of the FranceCoag cohort support differences in immunogenicity among one plasma-derived and two recombinant factor VIII brands in boys with severe hemophilia A. Haematologica 2018; 103 (01) 179-189 43 Goudemand J, Rothschild C, Demiguel V. et al; FVIII-LFB and Recombinant FVIII study groups. Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood 2006; 107 (01) 46-51 44 Gouw SC, van der Bom JG, Ljung R. et al; PedNet and RODIN Study Group. Factor VIII products and inhibitor development in severe hemophilia A. N Engl J Med 2013; 368 (03) 231-239 45 Peyvandi F, Mannucci PM, Garagiola I. et al. A randomized trial of factor VIII and neutralizing antibodies in hemophilia A. N Engl J Med 2016; 374 (21) 2054-2064 46 Swystun LL, Lai JD, Notley C. et al. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J Clin Invest 2018; 128 (09) 4057-4073 47 Swystun LL, Ogiwara K, Rawley O. et al. Genetic determinants of VWF clearance and FVIII binding modify FVIII pharmacokinetics in pediatric hemophilia A patients. Blood 2019; 134 (11) 880-891 48 Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016; 128 (16) 2007-2016 49 Saenko EL. Regulation of factor VIII life-cycle by receptors from LDL receptor superfamily. In: Scharrer I, Schramm W. eds. 36th Hemophilia Symposium Hamburg 2005. Berlin Heidelberg: Springer; 2007: 23-33 50 Lunghi B, Bernardi F, Martinelli N. et al. Functional polymorphisms in the LDLR and pharmacokinetics of factor VIII concentrates. J Thromb Haemost 2019; 17 (08) 1288-1296 51 Kurasawa JH, Shestopal SA, Karnaukhova E, Struble EB, Lee TK, Sarafanov AG. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. J Biol Chem 2013; 288 (30) 22033-22041 52 van den Biggelaar M, Madsen JJ, Faber JH. et al. Factor VIII interacts with the endocytic receptor low-density lipoprotein receptor-related protein 1 via an extended surface comprising “hot-spot” lysine residues. J Biol Chem 2015; 290 (27) 16463-16476 53 Young PA, Migliorini M, Strickland DK. Evidence that factor VIII forms a bivalent complex with the low density lipoprotein (LDL) receptor-related protein 1 (LRP1): IDENTIFICATION OF CLUSTER IV ON LRP1 AS THE MAJOR BINDING SITE. J Biol Chem 2016; 291 (50) 26035-26044 54 Chun H, Kurasawa JH, Olivares P. et al. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20 (10) 2255-2269 55 Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274 (53) 37685-37692 56 Lenting PJ, Neels JG, van den Berg BMM. et al. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274 (34) 23734-23739 57 Sarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J Biol Chem 2001; 276 (15) 11970-11979 58 Pegon JN, Kurdi M, Casari C. et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 2012; 97 (12) 1855-1863 59 Swystun LL, Notley C, Georgescu I. et al. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J Thromb Haemost 2019; 17 (04) 681-694 60 Garcia-Martínez I, Borràs N, Martorell M. et al. Common genetic variants in ABO and CLEC4M modulate the pharmacokinetics of recombinant FVIII in severe hemophilia A patients. Thromb Haemost 2020; 120 (10) 1395-1406 61 Lunghi B, Morfini M, Martinelli N, Linari S, Castaman G, Bernardi F. Combination of CLEC4M rs868875 G-carriership and ABO O genotypes may predict faster decay of FVIII infused in hemophilia A patients. J Clin Med 2022; 11 (03) 733 62 Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJ, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 2005; 3 (06) 1257-1265 63 Lunghi B, Morfini M, Martinelli N. et al. The asialoglycoprotein receptor minor subunit gene contributes to pharmacokinetics of factor VIII concentrates in hemophilia A. Thromb Haemost 2022; 122 (05) 715-725 64 O'Sullivan JM, Aguila S, McRae E. et al. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor. J Thromb Haemost 2016; 14 (12) 2446-2457 65 Ward SE, Guest T, Byrne C. et al; iPATH Study Group. Macrophage galactose lectin contributes to the regulation of FVIII (factor VIII) clearance in mice-brief report. Arterioscler Thromb Vasc Biol 2023; 43 (04) 540-546 66 O'Sullivan JM, Jenkins PV, Rawley O. et al. Galectin-1 and galectin-3 constitute novel-binding partners for factor VIII. Arterioscler Thromb Vasc Biol 2016; 36 (05) 855-863 67 Kolind MP, Nørby PL, Flintegaard TV, Berchtold MW, Johnsen LB. The B-domain of factor VIII reduces cell membrane attachment to host cells under serum free conditions. J Biotechnol 2010; 147 (3–4): 198-204 68 Dasgupta S, Navarrete A-M, Bayry J. et al. A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc Natl Acad Sci U S A 2007; 104 (21) 8965-8970 69 Delignat S, Rayes J, Dasgupta S. et al. Removal of mannose-ending glycan at Asn2118 abrogates FVIII presentation by human monocyte-derived dendritic cells. Front Immunol 2020; 11: 393 70 Vander Kooi A, Wang S, Fan M-N. et al. Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII. Blood Adv 2022; 6 (14) 4271-4282 71 Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns. MAbs 2021; 13 (01) 1999195 72 Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80 (05) 130 73 Gilbert GE, Novakovic VA, Shi J, Rasmussen J, Pipe SW. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. Blood 2015; 126 (10) 1237-1244 74 Döhrmann M, Makhoul S, Gross K. et al. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J 2020; 34 (07) 9337-9357 75 Sekar R, Mimoun A, Bou-Jaoudeh M. et al. High factor VIII concentrations interfere with glycoprotein VI-mediated platelet activation in vitro. J Thromb Haemost 2024; 22 (05) 1489-1495 76 Muia J, Zhu J, Gupta G. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A 2014; 111 (52) 18584-18589 77 Cao W, Krishnaswamy S, Camire RM, Lenting PJ, Zheng XL. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Natl Acad Sci U S A 2008; 105 (21) 7416-7421 78 Cao W, Trask AR, Bignotti AI. et al. Coagulation factor VIII regulates von Willebrand factor homeostasis invivo. J Thromb Haemost 2023; 21 (12) 3477-3489 79 Koppelman SJ, Hackeng TM, Sixma JJ, Bouma BN. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII. Blood 1995; 86 (03) 1062-1071 80 Rayes J, Ing M, Delignat S. et al. Complement C3 is a novel modulator of the anti-factor VIII immune response. Haematologica 2018; 103 (02) 351-360 81 Ringler E, Iannazzo SO, Herzig J. et al. Complement protein C3a enhances adaptive immune responses towards FVIII products. Haematologica 2023; 108 (06) 1579-1589 82 Chen C, Wang Q, Fang X, Xu Q, Chi C, Gu J. Roles of phytanoyl-CoA α-hydroxylase in mediating the expression of human coagulation factor VIII. J Biol Chem 2001; 276 (49) 46340-46346 83 Fang X, Chen C, Wang Q, Gu J, Chi C. The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII. Thromb Res 2001; 102 (02) 177-185 84 Barrow RT, Healey JF, Lollar P. Inhibition by heparin of thrombin-catalyzed activation of the factor VIII-von Willebrand factor complex. J Biol Chem 1994; 269 (01) 593-598 85 Repessé Y, Dimitrov JD, Peyron I. et al. Heme binds to factor VIII and inhibits its interaction with activated factor IX. J Thromb Haemost 2012; 10 (06) 1062-1071 86 Roumenina LT, Dimitrov JD. Assessment of the breadth of binding promiscuity of heme towards human proteins. Biol Chem 2022; 403 (11–12): 1083-1090 87 Fahey ME, Bennett MJ, Mahon C. et al. GPS-Prot: a web-based visualization platform for integrating host-pathogen interaction data. BMC Bioinformatics 2011; 12: 298 88 Del Toro N, Shrivastava A, Ragueneau E. et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res 2022; 50 (D1): D648-D653 89 Oughtred R, Rust J, Chang C. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 2021; 30 (01) 187-200 90 Guthmiller JJ, Lan LY-L, Fernández-Quintero ML. et al. Polyreactive broadly neutralizing B cells are selected to provide defense against pandemic threat influenza viruses. Immunity 2020; 53 (06) 1230-1244.e5 91 Ausserwöger H, Krainer G, Welsh TJ. et al. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120 (15) e2210332120 92 Rabia LA, Zhang Y, Ludwig SD, Julian MC, Tessier PM. Net charge of antibody complementarity-determining regions is a key predictor of specificity. Protein Eng Des Sel 2018; 31: 409-418 93 Kwon YD, Pegu A, Yang ES. et al. Improved pharmacokinetics of HIV-neutralizing VRC01-class antibodies achieved by reduction of net positive charge on variable domain. MAbs 2023; 15 (01) 2223350 94 Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its implications for biotechnology. Nat Biotechnol 2009; 27 (02) 157-167 95 Pratt KP, Shen BW, Takeshima K, Davie EW, Fujikawa K, Stoddard BL. Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 1999; 402 (6760) 439-442 96 Ngo JCK, Huang M, Roth DA, Furie BC, Furie B. Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure 2008; 16 (04) 597-606 97 Borowska MT, Boughter CT, Bunker JJ. et al. Biochemical and biophysical characterization of natural polyreactivity in antibodies. Cell Rep 2023; 42 (10) 113190 98 Boughter CT, Borowska MT, Guthmiller JJ. et al. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. eLife 2020; 9: e61393 99 Tsai C-J, Lin SL, Wolfson HJ, Nussinov R. Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 1997; 6 (01) 53-64 100 Zakas PM, Coyle CW, Brehm A. et al. Molecular coevolution of coagulation factor VIII and von Willebrand factor. Blood Adv 2021; 5 (03) 812-822 101 Zakas PM, Brown HC, Knight K. et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol 2017; 35 (01) 35-37 102 Panteleev MA, Ananyeva NM, Greco NJ, Ataullakhanov FI, Saenko EL. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J 2006; 273 (02) 374-387 103 Nogami K, Shima M, Hosokawa K. et al. Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem 1999; 274 (43) 31000-31007 104 O'Brien DP, Johnson D, Byfield P, Tuddenham EGD. Inactivation of factor VIII by factor IXa. Biochemistry 1992; 31 (10) 2805-2812 105 Rujas E, Leaman DP, Insausti S. et al. Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. iScience 2021; 24 (09) 102987 106 Barnes CO, Jette CA, Abernathy ME. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588 (7839) 682-687 107 Gangadharan B, Ing M, Delignat S. et al. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells. Haematologica 2017; 102 (02) 271-281 108 Seth Chhabra E, Liu T, Kulman J. et al. BIVV001, a new class of factor VIII replacement for hemophilia A that is independent of von Willebrand factor in primates and mice. Blood 2020; 135 (17) 1484-1496 109 Fathallah AM, Ramakrishnan R, Balu-Iyer SV. O-phospho-l-serine mediates hyporesponsiveness toward FVIII in hemophilia A-murine model by inducing tolerogenic properties in dendritic cells. J Pharm Sci 2014; 103 (11) 3457-3463 110 Purohit VS, Ramani K, Sarkar R, Kazazian Jr HH, Balasubramanian SV. Lower inhibitor development in hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. J Biol Chem 2005; 280 (18) 17593-17600 111 Wroblewska A, van Haren SD, Herczenik E. et al. Modification of an exposed loop in the C1 domain reduces immune responses to factor VIII in hemophilia A mice. Blood 2012; 119 (22) 5294-5300 112 Childers KC, Avery NG, Estrada Alamo KA. et al. Structure of coagulation factor VIII bound to a patient-derived anti-C1 domain antibody inhibitor. Blood 2023; 142 (02) 197-201 113 Harvey EP, Shin J-E, Skiba MA. et al. An in silico method to assess antibody fragment polyreactivity. Nat Commun 2022; 13 (01) 7554 114 Makowski EK, Kinnunen PC, Huang J. et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat Commun 2022; 13 (01) 3788 115 Blaschke T, Feldmann C, Bajorath J. Prediction of promiscuity cliffs using machine learning. Mol Inform 2021; 40 (01) e2000196 116 Minami H, Nogami K, Yada K, Shima M. Identification of the thrombin-binding site on factor VIII regulating Arg372 cleavage in the factor VIII heavy chain. Blood 2013; 122: 3570-3570 117 Fay PJ, Scandella D. Human inhibitor antibodies specific for the factor VIII A2 domain disrupt the interaction between the subunit and factor IXa. J Biol Chem 1999; 274 (42) 29826-29830 118 Bajaj SP, Schmidt AE, Mathur A. et al. Factor IXa:factor VIIIa interaction. helix 330-338 of factor ixa interacts with residues 558-565 and spatially adjacent regions of the a2 subunit of factor VIIIa. J Biol Chem 2001; 276 (19) 16302-16309 119 Griffiths AE, Rydkin I, Fay PJ. Factor VIIIa A2 subunit shows a high affinity interaction with factor IXa: contribution of A2 subunit residues 707-714 to the interaction with factor IXa. J Biol Chem 2013; 288 (21) 15057-15064 120 Lenting PJ, Donath MJ, van Mourik JA, Mertens K. Identification of a binding site for blood coagulation factor IXa on the light chain of human factor VIII. J Biol Chem 1994; 269 (10) 7150-7155 121 Takeyama M, Furukawa S, Sasai K, Horiuchi K, Nogami K. Factor VIII A3 domain residues 1793-1795 represent a factor IXa-interactive site in the tenase complex. Biochim Biophys Acta, Gen Subj 2023; 1867 (08) 130381 122 Nakajima Y, Takeyama M, Oda A, Shimonishi N, Nogami K. Factor VIII mutated with Lys1813Ala within the factor IXa-binding region enhances intrinsic coagulation potential. Blood Adv 2023; 7 (08) 1436-1445 123 Soeda T, Nogami K, Nishiya K. et al. The factor VIIIa C2 domain (residues 2228-2240) interacts with the factor IXa Gla domain in the factor Xase complex. J Biol Chem 2009; 284 (06) 3379-3388 124 Childers KC, Peters SC, Spiegel Jr PC. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J Thromb Haemost 2022; 20 (09) 1957-1970 125 Madsen JJ, Ohkubo YZ, Peters GH, Faber JH, Tajkhorshid E, Olsen OH. Membrane interaction of the factor VIIIa discoidin domains in atomistic detail. Biochemistry 2015; 54 (39) 6123-6131 126 Nogami K, Freas J, Manithody C, Wakabayashi H, Rezaie AR, Fay PJ. Mechanisms of interactions of factor X and factor Xa with the acidic region in the factor VIII A1 domain. J Biol Chem 2004; 279 (32) 33104-33113 127 Takeyama M, Nogami K, Sasai K, Furukawa S, Shima M. Contribution of factor VIII A2 domain residues 400-409 to a factor X-interactive site in the factor Xase complex. Thromb Haemost 2018; 118 (05) 830-841 128 Takeyama M, Wakabayashi H, Fay PJ. Factor VIII light chain contains a binding site for factor X that contributes to the catalytic efficiency of factor Xase. Biochemistry 2012; 51 (03) 820-828 129 Cramer TJ, Gale AJ. Function of the activated protein C (APC) autolysis loop in activated FVIII inactivation. Br J Haematol 2011; 153 (05) 644-654 130 Varfaj F, Neuberg J, Jenkins PV, Wakabayashi H, Fay PJ. Role of P1 residues Arg336 and Arg562 in the activated-protein-C-catalysed inactivation of factor VIIIa. Biochem J 2006; 396 (02) 355-362 131 Pipe SW, Morris JA, Shah J, Kaufman RJ. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem 1998; 273 (14) 8537-8544 132 Rual J-F, Venkatesan K, Hao T. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005; 437 (7062) 1173-1178 133 Chen T-C, Lin K-T, Chen C-H. et al. Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network. J Proteome Res 2014; 13 (12) 5339-5346 134 Nogami K, Wakabayashi H, Schmidt K, Fay PJ. Altered interactions between the A1 and A2 subunits of factor VIIIa following cleavage of A1 subunit by factor Xa. J Biol Chem 2003; 278 (03) 1634-1641 135 Lapan KA, Fay PJ. Interaction of the A1 subunit of factor VIIIa and the serine protease domain of factor X identified by zero-length cross-linking. Thromb Haemost 1998; 80 (03) 418-422 136 Warren DL, Morrissey JH, Neuenschwander PF. Proteolysis of blood coagulation factor VIII by the factor VIIa-tissue factor complex: generation of an inactive factor VIII cofactor. Biochemistry 1999; 38 (20) 6529-6536 137 Choi SJ, Jang KJ, Lim J-A, Kim HS. Human coagulation factor VIII domain-specific recombinant polypeptide expression. Blood Res 2015; 50 (02) 103-108 138 Cunningham MA, Pipe SW, Zhang B, Hauri H-P, Ginsburg D, Kaufman RJ. LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII. J Thromb Haemost 2003; 1 (11) 2360-2367 139 Bovenschen N, Boertjes RC, van Stempvoort G. et al. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem 2003; 278 (11) 9370-9377 140 Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466 (7302) 68-76 141 Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280 (27) 25881-25886 142 Fay PJ, Smudzin TM, Walker FJ. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem 1991; 266 (30) 20139-20145 143 Mesters RM, Houghten RA, Griffin JH. Identification of a sequence of human activated protein C (residues 390-404) essential for its anticoagulant activity. J Biol Chem 1991; 266 (36) 24514-24519 144 Li Q, Chen P, Zeng Z. et al. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Tumour Biol 2016; 37 (09) 12503-12512 145 Saenko EL, Scandella D. The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 1997; 272 (29) 18007-18014 146 Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263 (21) 10451-10455 147 Spiegel Jr PC, Jacquemin M, Saint-Remy J-MR, Stoddard BL, Pratt KP. Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 2001; 98 (01) 13-19 148 Malik S, Saito H, Takaoka M, Miki Y, Nakanishi A. BRCA2 mediates centrosome cohesion via an interaction with cytoplasmic dynein. Cell Cycle 2016; 15 (16) 2145-2156
 

留言 (0)

沒有登入
gif