Phenotypic quantification of Nphs1-deficient mice

NAPRTCS AL (2008) North American Pediatric Renal Trials and Collaborative Studies.

Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214

Article  CAS  PubMed  Google Scholar 

Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS et al (2017) Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol 28(10):3055–3065

Article  PubMed  PubMed Central  Google Scholar 

Warejko JK, Tan W, Daga A et al (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13(1):53–62

Article  CAS  PubMed  Google Scholar 

Sadowski CE, Lovric S, Ashraf S et al (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26(6):1279–1289

Article  CAS  PubMed  Google Scholar 

Park J, Shrestha R, Qiu C et al (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360(6390):758–763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354(13):1387–1401

Article  CAS  PubMed  Google Scholar 

Holzman LB, St John PL, Kovari IA et al (1999) Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int 56(4):1481–1491

Article  PubMed  Google Scholar 

Kestila M, Lenkkeri U, Mannikko M et al (1998) Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582

Article  CAS  PubMed  Google Scholar 

Huber TB, Hartleben B, Kim J et al (2003) Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol 23(14):4917–4928

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones N, Blasutig IM, Eremina V et al (2006) Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440(7085):818–823

Article  CAS  PubMed  Google Scholar 

Zhu J, Sun N, Aoudjit L et al (2008) Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int 73(5):556–566

Article  CAS  PubMed  Google Scholar 

Benzing T (2004) Signaling at the slit diaphragm. J Am Soc Nephrol 15(6):1382–1391

Article  PubMed  Google Scholar 

Lehtonen S (2008) Connecting the interpodocyte slit diaphragm and actin dynamics: Emerging role for the nephrin signaling complex. Kidney Int 73(8):903–905

Article  CAS  PubMed  Google Scholar 

Hamed RM, Shomaf M (2001) Congenital nephrotic syndrome: a clinico-pathologic study of thirty children. J Nephrol 14(2):104–109

CAS  PubMed  Google Scholar 

Zhao P, Tassew GB, Lee JY et al (2021) Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight. https://doi.org/10.1172/jci.insight.145936

Article  PubMed  PubMed Central  Google Scholar 

Putaala H, Soininen R, Kilpelainen P et al (2001) The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet 10(1):1–8

Article  CAS  PubMed  Google Scholar 

Hamano Y, Grunkemeyer JA, Sudhakar A et al (2002) Determinants of vascular permeability in the kidney glomerulus. J Biol Chem 277(34):31154–31162

Article  CAS  PubMed  Google Scholar 

Verma R, Venkatareddy M, Kalinowski A et al (2018) Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS ONE 13(6):e0198013

Article  PubMed  PubMed Central  Google Scholar 

Grahammer F, Wigge C, Schell C et al (2016) A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight. https://doi.org/10.1172/jci.insight.86177

Article  PubMed  PubMed Central  Google Scholar 

Villarreal R, Mitrofanova A, Maiguel D et al (2016) Nephrin contributes to insulin secretion and affects mammalian target of rapamycin signaling independently of insulin receptor. J Am Soc Nephrol 27(4):1029–1041

Article  CAS  PubMed  Google Scholar 

Moeller MJ, Sanden SK, Soofi A et al (2003) Podocyte-specific expression of cre recombinase in transgenic mice. Genesis 35(1):39–42

Article  CAS  PubMed  Google Scholar 

Widmeier E, Airik M, Hugo H et al (2019) Treatment with 2,4-Dihydroxybenzoic acid prevents FSGS progression and renal fibrosis in Podocyte-specific Coq6 knockout mice. J Am Soc Nephrol 30(3):393–405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Autio-Harmainen H (1981) Renal pathology of fetuses with congenital nephrotic syndrome of the Finnish type 2. a qualitative and quantitative electron microscopic study. Acta Pathol Microbiol Scand A 89(3):215–222

CAS  PubMed  Google Scholar 

Rapola J (1981) Renal pathology of fetal congenital nephrosis. Acta Pathol Microbiol Scand A 89(1):63–64

CAS  PubMed  Google Scholar 

Tryggvason K, Kouvalainen K (1975) Number of nephrons in normal human kidneys and kidneys of patients with the congenital nephrotic syndrome. a study using a sieving method for counting of glomeruli. Nephron 15(1):62–68

Article  CAS  PubMed  Google Scholar 

Ahvenainen EK, Hallman N, Hjelt L (1956) Nephrotic syndrome in newborn and young infants. Ann Paediatr Fenn 2(3):227–241

CAS  PubMed  Google Scholar 

Wartiovaara J, Ofverstedt LG, Khoshnoodi J et al (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114(10):1475–1483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holthofer H, Ahola H, Solin ML et al (1999) Nephrin localizes at the podocyte filtration slit area and is characteristically spliced in the human kidney. Am J Pathol 155(5):1681–1687

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif