AI-based abdominal CT measurements of orthotopic and ectopic fat predict mortality and cardiometabolic disease risk in adults

Kivimäki M, Kuosma E, Ferrie JE et al (2017) Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120,813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2:e277–e285

Article  PubMed  PubMed Central  Google Scholar 

Kammerlander AA, Lyass A, Mahoney TF et al (2021) Sex differences in the associations of visceral adipose tissue and cardiometabolic and cardiovascular disease risk: the Framingham heart study. J Am Heart Assoc 10:e019968

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Cupples LA, Stokes A, Liu C-T (2018) Association of obesity with mortality over 24 years of weight history: findings from the Framingham heart study. JAMA Netw Open 1:e184587

Article  PubMed  PubMed Central  Google Scholar 

Di Angelantonio E, Bhupathiraju SN, Wormser D et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388:776–786

Article  PubMed  Google Scholar 

Britton KA, Fox CS (2011) Ectopic fat depots and cardiovascular disease. Circulation 124:e837–e841

Article  PubMed  Google Scholar 

Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116:39–48

Article  PubMed  Google Scholar 

Therkelsen KE, Pedley A, Speliotes EK et al (2013) Intramuscular fat and associations with metabolic risk factors in the Framingham heart study. Arterioscler Thromb Vasc Biol 33:863–870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Speliotes EK, Massaro JM, Hoffmann U et al (2010) Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham heart study. Hepatology 51:1979–1987

Article  CAS  PubMed  Google Scholar 

Pickhardt PJ (2022) Value-added opportunistic CT screening: state of the art. Radiology 303:241–254

Article  PubMed  Google Scholar 

Pickhardt PJ, Graffy PM, Perez AA, Lubner MG, Elton DC, Summers RM (2021) Opportunistic screening at abdominal CT: use of automated body composition biomarkers for added cardiometabolic value. Radiographics 41:524–542

Article  PubMed  Google Scholar 

Pickhardt PJ, Graffy PM, Zea R et al (2020) Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health 2:e192–e200

Article  PubMed  PubMed Central  Google Scholar 

Pickhardt PJ, Graffy PM, Zea R et al (2020) Automated abdominal CT imaging biomarkers for opportunistic prediction of future major osteoporotic fractures in asymptomatic adults. Radiology 297:64–72

Article  PubMed  Google Scholar 

Nachit M, Horsmans Y, Summers RM, Leclercq IA, Pickhardt PJ (2023) AI-based CT body composition identifies myosteatosis as key mortality predictor in asymptomatic adults. Radiology 307:e222008

Article  PubMed  Google Scholar 

Lee SJ, Liu J, Yao J, Kanarek A, Summers RM, Pickhardt PJ (2018) Fully automated segmentation and quantification of visceral and subcutaneous fat at abdominal CT: application to a longitudinal adult screening cohort. Br J Radiol 91:20170968

Article  PubMed  PubMed Central  Google Scholar 

Graffy PM, Liu J, Pickhardt PJ, Burns JE, Yao J, Summers RM (2019) Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment. Br J Radiol 92:20190327

Article  PubMed  PubMed Central  Google Scholar 

Graffy PM, Liu J, O’Connor S, Summers RM, Pickhardt PJ (2019) Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort. Abdom Radiol (NY) 44:2921–2928

Article  PubMed  Google Scholar 

Pickhardt PJ (2017) Imaging and screening for colorectal cancer with CT colonography. Radio Clin North Am 55:1183–1196

Article  Google Scholar 

Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, 424–432

Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding proceedings of the 22nd ACM international conference on multimedia. Association for Computing Machinery, Orlando, Florida, USA, 675–678

Sandfort V, Yan K, Pickhardt PJ, Summers RM (2019) Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 9:16884

Article  PubMed  PubMed Central  Google Scholar 

Liu D, Garrett JW, Lee MH, Zea R, Summers RM, Pickhardt PJ (2023) Fully automated CT-based adiposity assessment: comparison of the L1 and L3 vertebral levels for opportunistic prediction. Abdom Radiol (NY) 48:787–795

Article  CAS  PubMed  Google Scholar 

Neeland IJ, Ross R, Després JP et al (2019) Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diab Endocrinol 7:715–725

Article  Google Scholar 

Neeland IJ, Poirier P, Després JP (2018) Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation 137:1391–1406

Article  PubMed  PubMed Central  Google Scholar 

Saad RK, Ghezzawi M, Horanieh R et al (2022) Abdominal visceral adipose tissue and all-cause mortality: a systematic review. Front Endocrinol (Lausanne) 13. https://doi.org/10.3389/fendo.2022.922931

Lavie CJ, Milani RV, Ventura HO (2009) Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53:1925–1932

Article  PubMed  Google Scholar 

Berrington de Gonzalez A, Hartge P, Cerhan JR et al (2010) Body-mass index and mortality among 1.46 million white adults. N Engl J Med 363:2211–2219

Article  CAS  PubMed  Google Scholar 

Zheng W, McLerran DF, Rolland B et al (2011) Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 364:719–729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aune D, Sen A, Prasad M et al (2016) BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 353:i2156

Article  PubMed  PubMed Central  Google Scholar 

Jayedi A, Khan TA, Aune D, Emadi A, Shab-Bidar S (2022) Body fat and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Int J Obes 46:1573–1581

Article  CAS  Google Scholar 

Lee JJ, Pedley A, Hoffmann U, Massaro JM, Levy D, Long MT (2018) Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: the Framingham heart study. Am J Med 131:684–692.e612

Article  PubMed  PubMed Central  Google Scholar 

Larsen B, Bellettiere J, Allison M et al (2020) Muscle area and density and risk of all-cause mortality: the multi-ethnic study of atherosclerosis. Metabolism 111:154321

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damluji AA, Alfaraidhy M, AlHajri N et al (2023) Sarcopenia and cardiovascular diseases. Circulation 147:1534–1553

Article  PubMed  PubMed Central  Google Scholar 

Murphy RA, Register TC, Shively CA et al (2013) Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J Gerontol A Biol Sci Med Sci 69:109–117

Article  PubMed  PubMed Central  Google Scholar 

Lee JJ, Pedley A, Hoffmann U et al (2016) Cross‐sectional associations of computed tomography (CT)‐derived adipose tissue density and adipokines: the Framingham heart study. J Am Heart Assoc 5:e002545

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif