T1 mapping: a non-invasive tool to assess the systemic right ventricle

Gilboa SM, Devine OJ, Kucik JE et al (2016) Congenital heart defects in the United States: estimating the magnitude of the affected Population in 2010. Circulation 134(2):101–109. https://doi.org/10.1161/CIRCULATIONAHA.115.019307

Article  PubMed  PubMed Central  Google Scholar 

Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 122(22):2254–2263. https://doi.org/10.1161/CIRCULATIONAHA.110.947002

Article  PubMed  PubMed Central  Google Scholar 

Warnes CA, Liberthson R, Danielson GK et al (2001) Task Force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 37(5):1170–1175. https://doi.org/10.1016/S0735-1097(01)01272-4

Article  CAS  PubMed  Google Scholar 

Mustard WT (1964) Successful two-stage correction, of transposition of the great vessels. Surgery 55:469–472

Senning A (1959) Surgical correction of transposition of the great vessels. Surgery 45(6):966–980

CAS  PubMed  Google Scholar 

Cuypers JAAE, Eindhoven JA, Slager MA et al (2014) The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur Heart J 35(25):1666–1674. https://doi.org/10.1093/eurheartj/ehu102

Article  PubMed  Google Scholar 

Graham TP, Bernard YD, Mellen BG et al (2000) Long-term outcome in congenitally corrected transposition of the great arteries. J Am Coll Cardiol 36(1):255–261. https://doi.org/10.1016/S0735-1097(00)00682-3

Article  PubMed  Google Scholar 

Vejlstrup N, Sørensen K, Mattsson E et al (2015) Long-term outcome of Mustard/Senning correction for transposition of the great arteries in Sweden and Denmark. Circulation 132(8):633–638. https://doi.org/10.1161/CIRCULATIONAHA.114.010770

Article  PubMed  Google Scholar 

Moons P, Gewillig M, Sluysmans T et al (2004) Long term outcome up to 30 years after the mustard or senning operation: a nationwide multicentre study in Belgium. Heart 90(3):307–313. https://doi.org/10.1136/hrt.2002.007138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dennis M, Kotchetkova I, Cordina R, Celermajer DS (2018) Long-term follow-up of adults following the Atrial switch operation for transposition of the great arteries – a contemporary cohort. Heart Lung Circ 27(8):1011–1017. https://doi.org/10.1016/j.hlc.2017.10.008

Article  PubMed  Google Scholar 

Carceller AM, Fouron JC, Smallhorn JF et al (1986) Wall thickness, cavity dimensions, and myocardial contractility of the left ventricle in patients with simple transposition of the great arteries. A multicenter study of patients from 10 to 20 years of age. Circulation 73(4):622–627. https://doi.org/10.1161/01.CIR.73.4.622

Article  CAS  PubMed  Google Scholar 

Turley K, Hanley FL, Verrier ED, Merrick SH, Ebert PA (1988) The Mustard procedure in infants (less than 100 days of age). Ten-year follow-up. J Thorac Cardiovasc Surg 96(6):849–853

Article  CAS  PubMed  Google Scholar 

Shehu N, Meierhofer C, Messroghli D et al (2018) Diffuse fibrosis is common in the left, but not in the right ventricle in patients with transposition of the great arteries late after atrial switch operation. Int J Cardiovasc Imaging 34(8):1241–1248. https://doi.org/10.1007/s10554-018-1338-9

Article  PubMed  Google Scholar 

Filippov AA, Del Nido PJ, Vasilyev NV (2016) Management of systemic right ventricular failure in patients with congenitally corrected transposition of the great arteries. Circulation 134(17):1293–1302. https://doi.org/10.1161/CIRCULATIONAHA.116.022106

Article  PubMed  Google Scholar 

Srinivasan C, Sachdeva R, Morrow WR, Greenberg SB, Vyas HV (2011) Limitations of Standard Echocardiographic Methods for Quantification of Right Ventricular Size and function in children and young adults. J Ultrasound Med 30(4):487–493. https://doi.org/10.7863/jum.2011.30.4.487

Article  PubMed  Google Scholar 

Kim RJ, Wu E, Rafael A et al (2000) The use of Contrast-Enhanced Magnetic Resonance Imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453. https://doi.org/10.1056/NEJM200011163432003

Article  CAS  PubMed  Google Scholar 

Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570. https://doi.org/10.1016/S1474-4422(17)30158-8

Article  PubMed  Google Scholar 

Kanda T, Nakai Y, Oba H, Toyoda K, Kitajima K, Furui S (2016) Gadolinium deposition in the brain. Magn Reson Imaging 34(10):1346–1350. https://doi.org/10.1016/j.mri.2016.08.024

Article  CAS  PubMed  Google Scholar 

Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15(1):92. https://doi.org/10.1186/1532-429X-15-92

Article  PubMed  PubMed Central  Google Scholar 

Maestrini V, Treibel TA, White SK, Fontana M, Moon JC (2014) T1 mapping for characterization of Intracellular and Extracellular Myocardial diseases in Heart failure. Curr Cardiovasc Imaging Rep 7(9):9287. https://doi.org/10.1007/s12410-014-9287-8

Article  PubMed  PubMed Central  Google Scholar 

Puntmann VO, Voigt T, Chen Z et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484. https://doi.org/10.1016/j.jcmg.2012.08.019

Article  PubMed  Google Scholar 

Nakamori S, Dohi K, Ishida M et al (2018) Native T1 mapping and extracellular volume mapping for the Assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging 11(1):48–59. https://doi.org/10.1016/j.jcmg.2017.04.006

Article  PubMed  Google Scholar 

Rao S, Tseng SY, Pednekar A et al (2022) Myocardial Parametric Mapping by Cardiac Magnetic Resonance Imaging in Pediatric Cardiology and congenital heart disease. Circ Cardiovasc Imaging 15(1). https://doi.org/10.1161/CIRCIMAGING.120.012242

Richmann DP, Gurijala N, Mandell JG et al (2022) Native T1 mapping detects both acute clinical rejection and graft dysfunction in pediatric heart transplant patients. J Cardiovasc Magn Reson 24(1):51. https://doi.org/10.1186/s12968-022-00875

Article  PubMed  PubMed Central  Google Scholar 

Cheung Yfai, Lam WWM, So EKF, Chow Pcheong (2020) Differential myocardial fibrosis of the systemic right ventricle and subpulmonary left ventricle after atrial switch operation for complete transposition of the great arteries. IJC Heart Vasc 30:100612. https://doi.org/10.1016/j.ijcha.2020.100612

Article  Google Scholar 

Al-Wakeel-Marquard N, Ferreira Da Silva T, Berger F, Kuehne T, Messroghli DR (2022) Myocardial extracellular volume is a non-invasive tissue marker of heart failure in patients with transposition of the great arteries and systemic right ventricle. Front Pediatr 10:949078. https://doi.org/10.3389/fped.2022.949078

Article  PubMed  PubMed Central  Google Scholar 

Spruijt OA, Vissers L, Bogaard HJ, Hofman MBM, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32(3):451–459. https://doi.org/10.1007/s10554-015-0787-7

Article  PubMed  Google Scholar 

Bove AA, Santamore WP (1981) Ventricular interdependence. Prog Cardiovasc Dis 23(5):365–388. https://doi.org/10.1016/0033-0620(81)90022

Article  CAS  PubMed  Google Scholar 

Kral Kollars CA, Gelehrter S, Bove EL, Ensing G (2010) Effects of Morphologic Left Ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries. Am J Cardiol 105(5):735–739. https://doi.org/10.1016/j.amjcard.2009.10.066

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif