From DNA to lytic proteins: transcription and translation of the bacteriophage T5 holin/endolysin operon

Bläsi U, Young R (1996) Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21:675–682. https://doi.org/10.1046/j.1365-2958.1996.331395.x

Article  PubMed  Google Scholar 

Borujeni AE, Channarasappa AS, Salis HM (2014) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659. https://doi.org/10.1093/nar/gkt1139

Article  CAS  Google Scholar 

Borujeni AE, Cetnar D, Farasat I, Smith A, Lundgren N, Salis HM (2017) Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Res 45:5437–5448. https://doi.org/10.1093/nar/gkx061

Article  CAS  Google Scholar 

Brunel F, Thi VH, Pilaete MF, Davison J (1983) Transcription regulatory elements in the late region of bacteriophage T5 DNA. Nucleic Acids Res 11:7649–7658. https://doi.org/10.1093/nar/11.21.7649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cahill J, Young R (2019) Phage lysis: multiple genes for multiple barriers. Adv Virus Res 103:33–70. https://doi.org/10.1016/bs.aivir.2018.09.003

Article  CAS  PubMed  Google Scholar 

Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–557. https://doi.org/10.1111/1574-6976.12006

Article  CAS  PubMed  Google Scholar 

Chen Y, Young R (2016) The last r Locus unveiled: T4 RIII is a cytoplasmic antiholin. J Bacteriol 198:2448–2457. https://doi.org/10.1128/jb.00294-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22:4953–4957. https://doi.org/10.1093/nar/22.23.4953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chinnadurai G, McCorquodale DJ (1973) Requirement of a phage-induced 5’-exonuclease for the expression of late genes of bacteriophage T5. Proc Natl Acad Sci USA 70:3502–3505. https://doi.org/10.1073/pnas.70.12.3502

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Smit MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672. https://doi.org/10.1073/pnas.87.19.7668

Article  PubMed  PubMed Central  Google Scholar 

de Smit MH, van Duin J (1994) Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Mol Biol 235:173–184. https://doi.org/10.1016/s0022-2836(05)80024-5

Article  PubMed  Google Scholar 

Gentz R, Bujard H (1985) Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. J Bacteriol 164:70–77. https://doi.org/10.1128/jb.164.1.70-77.1985

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horii T, Suzuki Y, Kobayashi M (2002) Characterization of a holin (HolNU3-1) in methicillin-resistant Staphylococcus aureus host. FEMS Immunol Med Microbiol 34:307–310. https://doi.org/10.1080/03079457.2013.805183

Article  CAS  PubMed  Google Scholar 

Hrzenjak A, Artl A, Knipping G, Kostner G, Sattler W, Malle E (2001) Silent mutations in secondary Shine-Dalgarno sequences in the cDNA of human serum amyloid A4 promotes expression of recombinant protein in Escherichia coli. Protein Eng 14:949–952. https://doi.org/10.1093/protein/14.12.949

Article  CAS  PubMed  Google Scholar 

Kovalenko AO, Chernyshov SV, Kutyshenko VP, Molochkov NV, Prokhorov DA, Odinokova IV, Mikoulinskaia GV (2019) Investigation of the calcium-induced activation of the bacteriophage T5 peptidoglycan hydrolase promoting host cell lysis. Metallomics 11:799–809. https://doi.org/10.1039/c9mt00020h

Article  CAS  PubMed  Google Scholar 

Leiva LE, Katz A (2022) Regulation of Leaderless mRNA translation in Bacteria. Microorganisms 10:723. https://doi.org/10.3390%2Fmicroorganisms10040723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luke K, Radek A, Liu X, Campbell J, Uzan M, Haselkorn R, Kogan Y (2002) Microarray analysis of gene expression during bacteriophage T4 infection. Virology 299:182–191. https://doi.org/10.1006/viro.2002.1409

Article  CAS  PubMed  Google Scholar 

Masulis IS, Babaeva ZSh, Chernyshov SV, Ozoline ON (2015) Visualizing the activity of Escherichia coli divergent promoters and probing their dependence on superhelical density using dual-colour fluorescent reporter vector. Sci Rep 5:11449. https://doi.org/10.1038/srep11449

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCorquodale DJ, Warner HR (1988) Bacteriophage T5 and related phages. In: Calendar R (ed) The bacteriophages, the viruses. Springer, Boston, MA, pp 439–475

Chapter  Google Scholar 

McCorquodale DJ, Chen CW, Joseph MK, Woychik R (1981) Modification of RNA polymerase from Escherichia coli by pre-early gene products of bacteriophage T5. J Virol 40:958–962. https://doi.org/10.1128/jvi.40.3.958-962.1981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikoulinskaia GV, Zimin AA, Feofanov SA, Miroshnikov AI (2004) Identification, cloning and expression of bacteriophage T5 dnk gene encoding a broad specificity deoxyribonucleoside monophosphate kinase (EC 2.7.4.13). Protein Exp Purif 33:166–175. https://doi.org/10.1016/j.pep.2003.07.006

Article  CAS  Google Scholar 

Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA (2009) Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5. FEBS J 276:7329–7342. https://doi.org/10.1111/j.1742-4658.2009.07443.x

Article  CAS  PubMed  Google Scholar 

Nguyen HM, Kang C (2014) Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes. J Virol 88:2107–2115. https://doi.org/10.1128/jvi.03274-13

Article  PubMed  PubMed Central  Google Scholar 

Nishizawa A, Nakayama M, Uemura T, Fukuda Y, Kimura S (2010) Ribosome-binding site interference caused by Shine-Dalgarno-like nucleotide sequences in Escherichia coli cells. J Biochem 147:433–443. https://doi.org/10.1093/jb/mvp187

Article  CAS  PubMed  Google Scholar 

Palmer SR, Burne RA (2015) Post-transcriptional regulation by distal Shine-Dalgarno sequences in the grpe-dnak intergenic region of Streptococcus mutans. Mol Microbiol 98:302–317. https://doi.org/10.1111/mmi.13122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payne KM, Hatfull GF (2012) Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS ONE 7:e34052. https://doi.org/10.1371%2Fjournal.pone.0034052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pispa JP, Sirbasku DA, Buchanan JM (1971) Patterns of ribonucleic acid synthesis in T5-infected Escherichia coli. IV. Examination of the role of deoxyribonucleic acid replication. J Biol Chem 246:1658–1664. https://doi.org/10.1016/S0021-9258(18)62362-2

Article  CAS  PubMed  Google Scholar 

Pohane AA, Jain V (2015) Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiol (Reading) 161:2269–2276. https://doi.org/10.1099/mic.0.000190

留言 (0)

沒有登入
gif