Statistical optimal parameters obtained by using clinical human ocular aberrations for high-precision aberration measurement

Liang J, Williams DR (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A 14(11):2884–2892. https://doi.org/10.1364/josaa.14.002884

Article  CAS  Google Scholar 

Merino D, Dainty C (2006) Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt Exp 14(8):3345–3353. https://doi.org/10.1364/OE.14.003345

Article  Google Scholar 

Pircher M, Zawadzki RJ (2017) Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging. Biomed Opt Express 8(5):2536–2562. https://doi.org/10.1364/BOE.8.002536

Article  PubMed  PubMed Central  Google Scholar 

Hammer DX, Ferguson RD, Bigelow CE, Iftimia NV, Ustun TE, Burns SA (2006) Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Exp 14(8):3354–3367. https://doi.org/10.1364/OE.14.003354

Article  Google Scholar 

Zhang Y, Poonja S, Roorda A (2006) MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett 31(9):1268–1270. https://doi.org/10.1364/OL.31.001268

Article  PubMed  Google Scholar 

Hoshi S, Wang XL, Kadomoto S, Liu RX, Ip MS, Sarraf D, Sadda SR, Zhang YH (2022) Adaptive optics scanning laser ophthalmoscopy of photoreceptor structure perturbation by acquired vitelliform lesions. Invest Ophth Vis Sci 63(7):2583–466

Google Scholar 

Alexopoulos P, Madu C, Wollstein G, Schuman JS (2022) The development and clinical application of innovative optical ophthalmic imaging techniques. Front Med 30(9):891369. https://doi.org/10.3389/fmed.2022.891369

Article  Google Scholar 

Li Y, Xia X, Paulus YM (2018) Advances in retinal optical imaging. Photonics 5(2):9. https://doi.org/10.3390/photonics5020009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frings A, Hassan H, Allan BD (2020) Pyramidal aberrometry in wavefront-guided myopic LASIK. J Refract 36(7):442–448. https://doi.org/10.3928/1081597X-20200519-03

Article  Google Scholar 

Zlatanović M, Živković M, Hristov A, Stojković V, Novak S, Zlatanović N, Brzaković M (2019) Central corneal thickness measured by the Oculyzer, BioGraph, and ultrasound pachymetry. Acta Medica Mediterr 58(2):33–37. https://doi.org/10.5633/amm.2019.0206

Article  Google Scholar 

Sun MS, Zhang L, Guo N, Song YZ, Zhang FJ (2018) Consistent comparison of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided LASIK for myopia by EX500 excimer laser. Int J Ophthalmol 11(4):662. https://doi.org/10.18240/ijo.2018.04.21

Article  PubMed  PubMed Central  Google Scholar 

Faria-Correia F, Ambrósio JR (2016) Clinical applications of the Scheimpflug principle in ophthalmology. Rev Bras Oftalmol 75:160–165. https://doi.org/10.5935/0034-7280.20160035

Article  Google Scholar 

Tuohy S, Podoleanu AG (2010) Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor. Opt Exp 18(4):3458–3476. https://doi.org/10.1364/OE.18.003458

Article  Google Scholar 

Schwiegerling J (2014) History of the Shack Hartmann wavefront sensor and its impact in ophthalmic optics. Proc SPIE 9186:291–298. https://doi.org/10.1117/12.2064536

Article  Google Scholar 

Shack RV, Platt BC (1971) Production and use of a lenticular Hartmann screen. J Opt Soc Am 61(5):648–697. https://doi.org/10.1364/JOSA.61.000648

Article  Google Scholar 

Gu D, Liu X (2022) Shack-Hartmann wavefront sensor based on Kalman filter. Opt Eng 61(9):093106. https://doi.org/10.1117/1.OE.61.9.093106

Article  Google Scholar 

Valdivieso-González LG, Muñoz-Potosi AF, Tepichin-Rodriguez E (2022) Design and characterization of a safe Shack-Hartmann type aberrometer for making in-vivo measurements: heuristic approximation. Opt Commun 454:124500. https://doi.org/10.1016/j.optcom.2019.124500

Article  CAS  Google Scholar 

Feierabend M, Rückel M, Denk W (2004) Coherence-gated wave-front sensing in strongly scattering samples. Opt Lett 29(19):2255–2257. https://doi.org/10.1364/OL.29.002255

Article  PubMed  Google Scholar 

Dufour ML, Lamouche G, Detalle V, Gauthier B, Sammut P (2005) Low-coherence interferometry—an advanced technique for optical metrology in industry. Insight 47(4):216–219. https://doi.org/10.1784/insi.47.4.216.63149

Article  Google Scholar 

Rueckel M, Denk W (2007) Properties of coherence-gated wavefront sensing. J Opt Soc Am A 24(11):3517–3529. https://doi.org/10.1364/JOSAA.24.003517

Article  Google Scholar 

Akondi V, Falldrof C, Marcos S, Vohnsen B (2015) Phase unwrapping with a virtual Hartmann-Shack wavefront sensor. Opt Exp 23(20):25425–25439. https://doi.org/10.1364/OE.23.025425

Article  CAS  Google Scholar 

Binding J (2013) Ruckel M (2013) Coherence-gated wavefront sensing. In: Kubby JA (ed) Adaptive optics for biological imaging. CRC Press, Boca Raton, pp 253–270

Chapter  Google Scholar 

Wang J, Gh Podoleanu A (2015) Demonstration of depth-resolved wavefront sensing using a swept-source coherence-gated Shack-Hartmann wavefront sensor. Proc SPIE 9312:61–65. https://doi.org/10.1117/12.2079253

Article  Google Scholar 

Akondi V, Steven S, Dubra A (2019) Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor. Opt Lett 44(17):4167–4170. https://doi.org/10.1364/OL.44.004167

Article  PubMed  PubMed Central  Google Scholar 

Akondi V, Dubra A (2019) Accounting for focal shift in the Shack-Hartmann wavefront sensor. Opt Lett 44(17):4151–4154. https://doi.org/10.1364/OL.44.004151

Article  PubMed  PubMed Central  Google Scholar 

Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci 103(46):17137–17142. https://doi.org/10.1073/pNSA.0604791103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Léger JF, Binding J, Boccara AC, Gigan S, Bourdieu L (2012) Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer. Biomed Opt Exp 3(10):2510–2525. https://doi.org/10.1364/BOE.3.002510

Article  Google Scholar 

van Werkhoven TIM, Antonello J, Truong HH, Verhaegen M, Gerritsen HC, Keller CU (2014) Snapshot coherence-gated wavefront sensing for multi-photon microscopy. Opt Exp 22(8):9715–9733. https://doi.org/10.1364/OE.22.009715

Article  Google Scholar 

Cua M, Wahl DJ, Zhao Y, Lee S, Bonora S, Zawadzki RJ, Jian Y, Sarunic MV (2015) Coherence-gated sensorless adaptive optics multi-photon retinal imaging. Sci Rep 6:32223. https://doi.org/10.1038/srep32223

Article  CAS  Google Scholar 

Yue X, Yang Y, Xiao F, Dai H, Geng C, Zhang Y (2021) Optimization of virtual Shack-Hartmann wavefront sensing. Sensors 21(14):4698. https://doi.org/10.3390/s21144698

Article  PubMed  PubMed Central  Google Scholar 

Thibos LN, Bradley A, Hong X (2002) A statistical model of the aberration structure of normal, well-corrected eyes. Ophthal Physiol Opt 22(5):427–433. https://doi.org/10.1046/j.1475-1313.2002.00059.x

Article  Google Scholar 

Aldebasi HI, Fawzy SM, Alsaleh AA (2013) Ocular aberrations in amblyopic children. Saudi J Ophthalmol 27(4):253–258. https://doi.org/10.1016/j.sjopt.2013.07.007

Article  PubMed  PubMed Central  Google Scholar 

Zhao J, Xiao F, Kang J, Zhao H, Dai Y, Zhang Y (2017) Statistical analysis of ocular monochromatic aberrations in Chinese population for adaptive optics ophthalmoscope design. J Innov Opt Heal Sci 10(1):1650038. https://doi.org/10.1142/S1793545816500383

Article  Google Scholar 

Kim J, Lim T, Kim MJ, Tchah H (2009) Changes of higher-order aberrations with the use of various mydriatics. Ophthal Physiol Opt 29(6):602–605. https://doi.org/10.1111/j.1475-1313.2009.00675.x

Article  Google Scholar 

Thibos LN (2009) Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations. Ophthal Physiol Opt 29(3):288–291. https://doi.org/10.1111/j.1475-1313.2009.00662.x

Article 

留言 (0)

沒有登入
gif