Production and characterization of extracellular liamocins produced from fungal strains of Aureobasidium spp.

Amatyakul N, Thaniyavarn S, Morikawa M, Thaniyavarn J (2020) Multiple biosurfactant production by Aureobasidium pullulans strain YTP6-14 in aqueous and heavy oil layers. J Gen Appl Microbiol 66(6):330–338. https://doi.org/10.2323/jgam.2020.01.011

Article  CAS  PubMed  Google Scholar 

Azin E, Jenab K, Moghimi H (2020) Biodegradation of crude oil by a halotolerant and biosurfactant producing strain of Mucor circinelloides in different microcosm conditions. Int J Environ Anal Chem 102(3). https://doi.org/10.1080/03067319.2020.1828385

Bischoff KM, Leathers TD, Price NP, Manitchotpisit P (2015) Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus. J Antibiot 68(10):642–645. https://doi.org/10.1038/ja.2015.39

Article  CAS  Google Scholar 

Bischoff KM, Brockmeier SL, Skory CD, Leathers TD, Price NP, Manitchotpisit P, Rich JO (2018) Susceptibility of Streptococcus suis to liamocins from Aureobasidium pullulans. Biocatal Agric Biotechnol 15:291–294. https://doi.org/10.1016/j.bcab.2018.06.025

Article  Google Scholar 

Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266. https://doi.org/10.1016/j.mib.2004.04.006

Article  CAS  PubMed  Google Scholar 

Dabaghi S, Ataei SA, Taher A (2023) Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. BMC Biotechnol 23(2):1–14. https://doi.org/10.1186/s12896-022-00772-4

Article  CAS  Google Scholar 

Garay LA, Sitepu IR, Cajka T, Fiehn O, Cathcart E, Fry RW, Kanti A, Nugroho AJ, Faulina SA, Stephanandra S, German JB, Boundy-Mills KL (2017) Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales. J Ind Microbiol Biotechnol 44(6):923–936. https://doi.org/10.1007/s10295-017-1919-y

Article  CAS  PubMed  Google Scholar 

Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman C (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549. https://doi.org/10.1186/1471-2164-15-549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isoda H, Nakahara T (1997) Antiproliferative effect of polyol lipids, 3,5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol on lung cancer cell line A549. J Ferment Bioeng 84(5):403–406. https://doi.org/10.1016/S0922-338X(97)81999-X

Article  CAS  Google Scholar 

Israelachvili J (1994) The science and applications of emulsions-an overview. Colloids Surf Physicochem Eng Asp 91:1–8. https://doi.org/10.1016/0927-7757(94)02743-9

Article  CAS  Google Scholar 

Jiménez-Peñalver P, Koh A, Gross R, Gea T, Font X (2019) Biosurfactants from waste: structures and interfacial properties of sophorolipids produced from a residual oil cake. J Surfactants Deterg 3(2). https://doi.org/10.1002/jsde.12366

Kang XX, Jia SL, Wei X, Zhang M, Liu GL, Hu Z, Chi Z, Chi ZM (2022) Liamocins biosynthesis, its regulation in Aureobasidium spp., and their bioactivities. Crit Rev Biotechnol 42(1):93–105. https://doi.org/10.1080/07388551.2021.1931017

Article  CAS  PubMed  Google Scholar 

Kim JS, Lee IK, Yun BS (2015) A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tigerlily wild flower, Lilium lancifolium Thunb. PLoS One 10(4): e0122917.https://doi.org/10.1371/journal.pone.0122917

Kurosawa T, Sakai K, Nakahara T, Oshima Y, Tabuch T (1994) Extracellular accumulation of the polyol lipids, 3, 5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium Sp. Biosci Biotechnol Biochem 58(11):2057–2060. https://doi.org/10.1271/bbb.58.2057

Article  CAS  Google Scholar 

Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7(1–2):12–20. https://doi.org/10.1016/S1359-0294(02)00007-9

Article  CAS  Google Scholar 

Leathers TD, Nofsinger GW, Kurtzman CP, Bothast RJ (1988) Pullulan production by color variants of Aureobasidium pullulans. J Ind Microbiol 3(4):231–239. https://doi.org/10.1007/BF01569581

Article  Google Scholar 

Leathers TD, Price NP, Bischoff KM, Manitchotpisit P, Skory CD (2015) Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media. Biotechnol Lett 37(10):2075–2081. https://doi.org/10.1007/s10529-015-1892-3

Article  CAS  PubMed  Google Scholar 

Leathers TD, Price NP, Manitchotpisit P, Bischoff KM (2016) Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans. World J Microbiol Biotechnol 32(12):1–7. https://doi.org/10.1007/s11274-016-2158-5

Article  CAS  Google Scholar 

Leathers TD, Skory CD, Price NP, Nunnally MS (2018) Medium optimization for production of anti-streptococcal liamocins by Aureobasidium pullulans. Biocatal Agric Biotechnol 13:53–57. https://doi.org/10.1016/j.bcab.2017.11.008

Article  Google Scholar 

Legawiec K, Kruszelnicki M, Bastrzyk A, Polowczyk I (2021) Rhamnolipids as effective green agents in the destabilisation of dolomite suspension. Int J Mol Sci 22(19):10591. https://doi.org/10.3390/ijms221910591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lotrakul P, Unhapattaratitikul P, Seelanan T, Prasongsuk S, Punnapayak H (2013) An aubasidan-like β-glucan produced by Aureobasidium pullulans in Thailand. Sci Asia 39(4):363–368. https://doi.org/10.2306/scienceasia1513-1874.2013.39.363

Article  CAS  Google Scholar 

Lovaglio RB, dos Santos FJ, Junior MJ, Contiero J (2011) Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf B 85(2):301–305. https://doi.org/10.1016/j.colsurfb.2011.03.001

Article  CAS  Google Scholar 

Makkar R, Cameotra S (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58(4):428–434. https://doi.org/10.1007/s00253-001-0924-1

Article  CAS  PubMed  Google Scholar 

Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, Buono P (2015) Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20:17339–17361. https://doi.org/10.3390/molecules200917339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manitchotpisit P, Leathers TD, Peterson SW, Kurtzman CP, Li XL, Eveleigh DE, Lotrakul P, Prasongsuk S, Dunlap CA, Vermillion KE, Punnapayak H (2009) Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycol Res 113(10):1107–1120. https://doi.org/10.1016/j.mycres.2009.07.008

Article  CAS  PubMed  Google Scholar 

Manitchotpisit P, Price NP, Leathers TD, Punnapayak H (2011) Heavy oils produced by Aureobasidium pullulans. Biotechnol Lett 33(6):1151–1157. https://doi.org/10.1007/s10529-011-0548-1

Article  CAS  PubMed  Google Scholar 

Manitchotpisit P, Watanapokasin R, Price NP, Bischoff KM, Tayeh M, Teeraworawit S, Kriwong S, Leathers TD (2014) Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity. World J Microbiol Biotechnol 30(8):2199–2204. https://doi.org/10.1007/s11274-014-1639-7

Article  CAS  PubMed  Google Scholar 

Mawani J, Jadhav J, Pratap A (2021) Fermentative production of mannosylerythritol lipids using sweet water as waste substrate by Pseudozyma Antarctica (MTCC 2706). Tenside Surfactants Deterg 58(4):246–258. https://doi.org/10.1515/tsd-2020-2272

Article  CAS  Google Scholar 

Na Nongkhai S, Piemthongkham P, Bankeeree W, Punnapayak H, Lotrakul P, Prasongsuk S (2023) Xylooligosaccharides produced from sugarcane leaf arabinoxylan using xylanase from Aureobasidium pullulans NRRL 58523 and its prebiotic activity toward Lactobacillus spp. Heliyon 9(11):e22107. https://doi.org/10.1016/j.heliyon.2023.e22107

Article  CAS  Google Scholar 

Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890. https://doi.org/10.3390/ijms160612871

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson SW, Manitchotpisit P, Leathers TD (2013) Aureobasidium thailandense sp. nov. isolated from leaves and wooden surfaces. Int J Syst Evol Microbiol 63:790–795. https://doi.org/10.1099/ijs.0.047613-0

Article 

留言 (0)

沒有登入
gif