Mechanisms of Action of the US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs

Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33(5–6):533–40. https://doi.org/10.1111/j.1440-1681.2006.04403.x.

Article  CAS  PubMed  Google Scholar 

Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-targeted therapy based on RNA interference and antisense oligonucleotides: current applications and novel molecular targets. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23168875.

Article  PubMed  PubMed Central  Google Scholar 

Teng M, Xia ZJ, Lo N, Daud K. He HH (2024) Assembling the RNA therapeutics toolbox. Med Rev. 2021;4(2):110–28. https://doi.org/10.1515/mr-2023-0062.

Article  Google Scholar 

Vinjamuri BP, Pan J, Peng P. A review on commercial oligonucleotide drug products. J Pharm Sci. 2024. https://doi.org/10.1016/j.xphs.2024.04.021.

Article  PubMed  Google Scholar 

Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50:259–93. https://doi.org/10.1146/annurev.pharmtox.010909.105654.

Article  CAS  PubMed  Google Scholar 

Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B. RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Rep. 2019;29(9):2890-2900e2895. https://doi.org/10.1016/j.celrep.2019.10.108.

Article  CAS  PubMed  Google Scholar 

Hyjek M, Figiel M, Nowotny M. RNases H: structure and mechanism. DNA Repair (Amst). 2019;84: 102672. https://doi.org/10.1016/j.dnarep.2019.102672.

Article  CAS  PubMed  Google Scholar 

Liu Y, Kao HI, Bambara RA. Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589–615. https://doi.org/10.1146/annurev.biochem.73.012803.092453.

Article  CAS  PubMed  Google Scholar 

Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther. 2017;25(9):2075–92. https://doi.org/10.1016/j.ymthe.2017.06.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52(3):400–8. https://doi.org/10.1038/s12276-020-0407-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leppek K, Das R, Barna M. Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–74. https://doi.org/10.1038/nrm.2017.103.

Article  CAS  PubMed  Google Scholar 

Yoshida T, Naito Y, Sasaki K, Uchida E, Sato Y, Naito M, Kawanishi T, Obika S, Inoue T. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences. Genes Cells. 2018;23(6):448–55. https://doi.org/10.1111/gtc.12587.

Article  CAS  PubMed  Google Scholar 

Far RK, Nedbal W, Sczakiel G. Concepts to automate the theoretical design of effective antisense oligonucleotides. Bioinformatics. 2001;17(11):1058–61. https://doi.org/10.1093/bioinformatics/17.11.1058.

Article  CAS  PubMed  Google Scholar 

Sohail M, Hochegger H, Klotzbucher A, Guellec RL, Hunt T, Southern EM. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo. Nucleic Acids Res. 2001;29(10):2041–51. https://doi.org/10.1093/nar/29.10.2041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL, de Kimpe S, van Deutekom JC, t Hoen PA, van Ommen GJ. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther. 2009;17(3):548–53. https://doi.org/10.1038/mt.2008.205.

Article  CAS  PubMed  Google Scholar 

Matveeva OV, Tsodikov AD, Giddings M, Freier SM, Wyatt JR, Spiridonov AN, Shabalina SA, Gesteland RF, Atkins JF. Identification of sequence motifs in oligonucleotides whose presence is correlated with antisense activity. Nucleic Acids Res. 2000;28(15):2862–5. https://doi.org/10.1093/nar/28.15.2862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verma A. Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases. Ann Indian Acad Neurol. 2018;21(1):3–8. https://doi.org/10.4103/aian.AIAN_298_17.

Article  PubMed  PubMed Central  Google Scholar 

Yoo BH, Bochkareva E, Bochkarev A, Mou TC, Gray DM. 2’-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004;32(6):2008–16. https://doi.org/10.1093/nar/gkh516.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gertz MA, Scheinberg M, Waddington-Cruz M, Heitner SB, Karam C, Drachman B, Khella S, Whelan C, Obici L. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert Rev Clin Pharmacol. 2019;12(8):701–11. https://doi.org/10.1080/17512433.2019.1635008.

Article  CAS  PubMed  Google Scholar 

Coelho T, Yarlas A, Waddington-Cruz M, White MK, Sikora Kessler A, Lovley A, Pollock M, Guthrie S, Ackermann EJ, Hughes SG, Karam C, Khella S, Gertz M, Merlini G, Obici L, Schmidt HH, Polydefkis M, Dyck PJB, Brannagan Iii TH, Conceicao I, Benson MD, Berk JL. Inotersen preserves or improves quality of life in hereditary transthyretin amyloidosis. J Neurol. 2020;267(4):1070–9. https://doi.org/10.1007/s00415-019-09671-9.

Article  CAS  PubMed  Google Scholar 

Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther. 2019;13:1515–25. https://doi.org/10.2147/DDDT.S162913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gales L. Tegsedi (Inotersen): an antisense oligonucleotide approved for the treatment of adult patients with hereditary transthyretin amyloidosis. Pharmaceuticals (Basel). 2019. https://doi.org/10.3390/ph12020078.

Article  PubMed  Google Scholar 

Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Plante-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31. https://doi.org/10.1056/NEJMoa1716793.

Article  CAS  PubMed  Google Scholar 

Coelho T, Marques W Jr, Dasgupta NR, Chao CC, Parman Y, Franca MC Jr, Guo YC, Wixner J, Ro LS, Calandra CR, Kowacs PA, Berk JL, Obici L, Barroso FA, Weiler M, Conceicao I, Jung SW, Buchele G, Brambatti M, Chen J, Hughes SG, Schneider E, Viney NJ, Masri A, Gertz MR, Ando Y, Gillmore JD, Khella S, Dyck PJB, Waddington Cruz M, Investigators NE-T. Eplontersen for hereditary transthyretin amyloidosis with polyneuropathy. JAMA. 2023;330(15):1448–58. https://doi.org/10.1001/jama.2023.18688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viney NJ, Guo S, Tai LJ, Baker BF, Aghajan M, Jung SW, Yu RZ, Booten S, Murray H, Machemer T, Burel S, Murray S, Buchele G, Tsimikas S, Schneider E, Geary RS, Benson MD, Monia BP. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail. 2021;8(1):652–61. https://doi.org/10.1002/ehf2.13154.

Article  PubMed  Google Scholar 

Park B, Oh H, Lee S, Song Y, Shin J, Sung YC, Hwang SY, Ahn K. The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol. 2002;168(7):3464–9. https://doi.org/10.4049/jimmunol.168.7.3464.

Article 

留言 (0)

沒有登入
gif