Unravelling the molecular tapestry of pterygium: insights into genes for diagnostic and therapeutic innovations

Rosenthal JW. Chronology of pterygium therapy. Am J Ophthalmol. 1953;36:1601–16.

Article  CAS  PubMed  Google Scholar 

Cardenas-Cantu E, Zavala J, Valenzuela J, Valdez-Garcia JE. Molecular basis of pterygium development. Semin Ophthalmol. 2016;31:567–83.

PubMed  Google Scholar 

Rezvan F, Khabazkhoob M, Hooshmand E, Yekta A, Saatchi M, Hashemi H. Prevalence and risk factors of pterygium: a systematic review and meta-analysis. Surv Ophthalmol. 2018;63:719–35.

Article  PubMed  Google Scholar 

Shahraki T, Arabi A, Feizi S. Pterygium: an update on pathophysiology, clinical features, and management. Ther Adv Ophthalmol. 2021;13:25158414211020152.

PubMed  PubMed Central  Google Scholar 

Hung KH, Lin C, Roan J, Kuo CF, Hsiao CH, Tan HY, et al. Application of a deep learning system in pterygium grading and further prediction of recurrence with slit lamp photographs. Diagnostics (Basel). 2022;12:888.

Article  PubMed  Google Scholar 

Palewski M, Budnik A, Konopinska J. Evaluating the efficacy and safety of different pterygium surgeries: a review of the literature. Int J Environ Res Public Health. 2022;19:11357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackenzie FD, Hirst LW, Battistutta D, Green A. Risk analysis in the development of pterygia. Ophthalmology. 1992;99:1056–61.

Article  CAS  PubMed  Google Scholar 

Saw SM, Tan D. Pterygium: prevalence, demography and risk factors. Ophthalmic Epidemiol. 1999;6:219–28.

Article  CAS  PubMed  Google Scholar 

Cameron ME. Histology of pterygium: an electron microscopic study. Br J Ophthalmol. 1983;67:604–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

Article  CAS  PubMed  Google Scholar 

Jackson BC, Nebert DW, Vasiliou V. Update of human and mouse matrix metalloproteinase families. Hum Genomics. 2010;4:194–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992;7:120–5.

Article  CAS  PubMed  Google Scholar 

Dushku N, John MK, Schultz GS, Reid TW. Pterygia pathogenesis: corneal invasion by matrix metalloproteinase expressing altered limbal epithelial basal cells. Arch Ophthalmol. 2001;119:695–706.

Article  CAS  PubMed  Google Scholar 

Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argaez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370.

Article  PubMed  PubMed Central  Google Scholar 

Yang SF, Lin CY, Yang PY, Chao SC, Ye YZ, Hu DN. Increased expression of gelatinase (MMP-2 and MMP-9) in pterygia and pterygium fibroblasts with disease progression and activation of protein kinase C. Invest Ophthalmol Vis Sci. 2009;50:4588–96.

Article  PubMed  Google Scholar 

Shibata N, Ishida H, Kiyokawa E, Singh DP, Sasaki H, Kubo E. Relative gene expression analysis of human pterygium tissues and UV radiation-evoked gene expression patterns in corneal and conjunctival cells. Exp Eye Res. 2020;199:108194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

John-Aryankalayil M, Dushku N, Jaworski CJ, Cox CA, Schultz G, Smith JA, et al. Microarray and protein analysis of human pterygium. Mol Vis. 2006;12:55–64.

PubMed  Google Scholar 

Cui YH, Feng QY, Liu Q, Li HY, Song XL, Hu ZX, et al. Posttranscriptional regulation of MMP-9 by HuR contributes to IL-1beta-induced pterygium fibroblast migration and invasion. J Cell Physiol. 2020;235:5130–40.

Article  CAS  PubMed  Google Scholar 

Tsai CB, Hsia NY, Wang ZH, Yang JS, Hsu YM, Wang YC, et al. The contribution of MMP-9 genotypes to pterygium in Taiwan. Anticancer Res. 2020;40:4523–7.

Article  CAS  PubMed  Google Scholar 

Tsai CB, Hsia NY, Wang YC, Wang ZH, Chin YT, Huang TL, et al. The significant association of MMP-1 genotypes with Taiwan Pterygium. Anticancer Res. 2020;40:703–7.

Article  CAS  PubMed  Google Scholar 

Li DQ, Lee SB, Gunja-Smith Z, Liu Y, Solomon A, Meller D, et al. Overexpression of collagenase (MMP-1) and stromelysin (MMP-3) by pterygium head fibroblasts. Arch Ophthalmol. 2001;119:71–80.

CAS  PubMed  Google Scholar 

Seet LF, Tong L, Su R, Wong TT. Involvement of SPARC and MMP-3 in the pathogenesis of human pterygium. Invest Ophthalmol Vis Sci. 2012;53:587–95.

Article  CAS  PubMed  Google Scholar 

Suarez MF, Echenique J, Lopez JM, Medina E, Iros M, Serra HM, et al. Transcriptome analysis of pterygium and pinguecula reveals evidence of genomic instability associated with chronic inflammation. Int J Mol Sci. 2021;22:12090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta H, Galatas B, Chidimatembue A, Huijben S, Cistero P, Matambisso G, et al. Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One. 2020;15:e0240174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YH, Jung JC, Jung SY, Kim YI, Lee KW, Park YJ. Cyclosporine A downregulates MMP-3 and MMP-13 expression in cultured pterygium fibroblasts. Cornea. 2015;34:1137–43.

Article  PubMed  Google Scholar 

Kim YH, Jung JC, Gum SI, Park SB, Ma JY, Kim YI, et al. Inhibition of pterygium fibroblast migration and outgrowth by bevacizumab and cyclosporine A involves down-regulation of matrix metalloproteinases-3 and -13. PLoS One. 2017;12:e0169675.

Article  PubMed  PubMed Central  Google Scholar 

Di Girolamo N, Coroneo MT, Wakefield D. Active matrilysin (MMP-7) in human pterygia: potential role in angiogenesis. Invest Ophthalmol Vis Sci. 2001;42:1963–8.

PubMed  Google Scholar 

Feng Y, Yuan F. Proteomics: a new perspective for the understanding of pterygia. Proteomics Clin Appl. 2017;11:7-8.

Linghu D, Guo L, Zhao Y, Liu Z, Zhao M, Huang L et al. iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in pterygia. Proteomics Clin Appl. 2017;11:7–8.

Tsai YY, Chiang CC, Yeh KT, Lee H, Cheng YW. Effect of TIMP-1 and MMP in pterygium invasion. Invest Ophthalmol Vis Sci. 2010;51:3462–7.

Article  PubMed  Google Scholar 

Gupta H, Srivastava S, Chaudhari S, Vasudevan TG, Hande MH, D’Souza SC, et al. New molecular detection methods of malaria parasites with multiple genes from genomes. Acta Trop. 2016;160:15–22.

Article  CAS  PubMed  Google Scholar 

Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

Article  CAS  PubMed  Google Scholar 

Kim I, Ryan AM, Rohan R, Amano S, Agular S, Miller JW, et al. Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci. 1999;40:2115–21.

CAS  PubMed  Google Scholar 

Gebhardt M, Mentlein R, Schaudig U, Pufe T, Recker K, Nolle B, et al. Differential expression of vascular endothelial growth factor implies the limbal origin of pterygia. Ophthalmology. 2005;112:1023–30.

Article  PubMed 

留言 (0)

沒有登入
gif