Diabetic microenvironment deteriorates the regenerative capacities of adipose mesenchymal stromal cells

Association A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):pS81–S90.

Article  Google Scholar 

Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

Article  CAS  PubMed  Google Scholar 

Jun H-S, et al. Pathogenesis of non-insulin-dependent (type II) diabetes mellitus (NIDDM)–genetic predisposition and metabolic abnormalities. Adv Drug Deliv Rev. 1999;35(2–3):157–77.

Article  CAS  PubMed  Google Scholar 

El-Badri N, Ghoneim MA. Mesenchymal stem cell therapy in diabetes mellitus: progress and challenges Journal of nucleic acids, 2013. 2013.

El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS ONE. 2016;11(4):e0151938.

Article  PubMed  PubMed Central  Google Scholar 

Pires IGS et al. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis 2022: p. 101740.

El-Badawy A, et al. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells. Sci Rep. 2016;6(1):1–11.

Article  Google Scholar 

Panina YA, et al. Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol. 2018;9:1656.

Article  PubMed  PubMed Central  Google Scholar 

Elkhenany H, et al. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Anim Sci Biotechnol. 2016;7(1):1–13.

Article  Google Scholar 

Smith RJ, Reid AJ. The potential of adipose-derived stem cell subpopulations in regenerative medicine. Future Medicine; 2018.

Lee SE, et al. Mesenchymal stem cells prevent the progression of diabetic nephropathy by improving mitochondrial function in tubular epithelial cells. Exp Mol Med. 2019;51(7):1–14.

PubMed  PubMed Central  Google Scholar 

Madonna R, et al. Transplantation of mesenchymal cells improves peripheral limb ischemia in diabetic rats. Mol Biotechnol. 2014;56(5):438–48.

Article  CAS  PubMed  Google Scholar 

Hu J et al. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J, 2015: p. EJ14–0584.

Aliakbari S, et al. Impaired immunomodulatory ability of type 2 diabetic adipose-derived mesenchymal stem cells in regulation of inflammatory condition in mixed leukocyte reaction. EXCLI J. 2019;18:852.

PubMed  PubMed Central  Google Scholar 

Shaaban S et al. N, N′-Diphenyl-1, 4-phenylenediamine antioxidant’s potential role in enhancing the pancreatic antioxidant, Immunomodulatory, and anti-apoptotic therapeutic capabilities of adipose-derived stem cells in type I Diabetic rats. 2022. 12(1): p. 58.

Seo E, et al. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Translational Med. 2017;15(1):1–9.

Article  Google Scholar 

Liu G, et al. Correction of diabetic erectile dysfunction with adipose derived stem cells modified with the vascular endothelial growth factor gene in a rodent diabetic model. PLoS ONE. 2013;8(8):e72790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallner C, et al. Local application of isogenic adipose-derived stem cells restores bone healing capacity in a type 2 diabetes model. Stem Cells Translational Med. 2016;5(6):836–44.

Article  CAS  Google Scholar 

Liang L, et al. Adipose-derived stem cells combined with inorganic bovine bone in Calvarial Bone Healing in rats with type 2 diabetes. J Periodontol. 2014;85(4):601–9.

Article  PubMed  Google Scholar 

Bliley JM, et al. Administration of adipose-derived stem cells enhances vascularity, induces collagen deposition, and dermal adipogenesis in burn wounds. Burns. 2016;42(6):1212–22.

Article  PubMed  Google Scholar 

Strong AL, et al. Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of adipogenesis in skin repair. Stem Cells Translational Med. 2015;4(6):632–42.

Article  CAS  Google Scholar 

Tozour JN et al. Intrauterine hyperglycemia is associated with an impaired postnatal response to oxidative damage. 2018. 27(10): p. 683–91.

Zhu G et al. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells 2013. 433(4): pp. 526–531.

de Lima KA, et al. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther. 2016;7(1):1–16.

Google Scholar 

Svensson R et al. Electrolyte-based calculation of fluid shifts after infusing 0.9% saline in severe hyperglycemia. 2020. 8: p. 1–11.

Feher J. Regulation of arterial pressure 2012: pp. 538 – 48.

Morrison GJCMTH, Physical. and L.E.r. edition, Serum chloride 1990.

Casalena GA et al. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. 2020. 18(1): p. 1–15.

Su W et al. Diabetic microenvironment preconditioning of adipose tissue-derived mesenchymal stem cells enhances their anti-diabetic, anti-long-term complications, and anti-inflammatory effects in type 2 diabetic rats. 2022. 13(1): p. 422.

Dominici M et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. 2006. 8(4): p. 315–7.

Sedky NK et al. The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. 2018. 119(5): p. 3892–902.

El-Badawy A et al. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. 2018. 7(7): p. bio034181.

El-Badawy A, et al. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biology open. 2018;7(7):bio034181.

Article  PubMed  PubMed Central  Google Scholar 

Elkhenany H, El-Badri N, Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Volume 115. Biomedicine & Pharmacotherapy; 2019. p. 108861.

Ahmed TA et al. Human adipose-derived pericytes: biological characterization and reprogramming into induced pluripotent stem cells. 2020. 54(2): p. 271–86.

Ahmed TA et al. The cross talk between type II diabetic microenvironment and the regenerative capacities of human adipose tissue-derived pericytes: a promising cell therapy. 2024. 15(1): p. 1–18.

Ta HQ et al. Steen solution protects pulmonary microvascular endothelial cells and preserves endothelial barrier after lipopolysaccharide-induced injury. 2023. 165(1): p. e5–20.

Magdeldin S et al. Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. 2014. 11(1): p. 1–10.

Hayflick L. Cell biology of aging. Bioscience. 1975;25(10):629–37.

Article  Google Scholar 

Cianfarani F, et al. Diabetes impairs adipose tissue–derived stem cell function and efficiency in promoting wound healing. Wound Repair Regeneration. 2013;21(4):545–53.

Article  PubMed  Google Scholar 

Ferrer-Lorente R, et al. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia. 2014;57(1):246–56.

Article  PubMed  Google Scholar 

Kim HK, et al. Alterations in the proangiogenic functions of adipose tissue–derived stromal cells isolated from diabetic rats. Stem Cells Dev. 2008;17(4):669–80.

Article  CAS  PubMed  Google Scholar 

Campioni D et al. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. 2009. 76(3): p. 225–30.

Wiesmann A et al. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. 2006. 2: p. 1–6.

Han S-M et al. Enhanced proliferation and differentiation of Oct4-and Sox2-overexpressing human adipose tissue mesenchymal stem cells 2014. 46(6): pp. e101-e101.

Yoon D et al. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. 2011. 44(5): p. 428–40.

Van Tienen F, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes. 2011;35(9):1154–64.

Article  Google Scholar 

George BP, Abrahamse H. Increased oxidative stress induced by rubus bioactive compounds induce apoptotic cell death in human breast cancer cells Oxidative medicine and cellular longevity, 2019. 2019.

Wei H, et al. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK. J Cell Biochem. 2010;111(4):967–78.

Article  CAS  PubMed  Google Scholar 

Gourlay CW, Ayscough KR. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res. 2005;5(12):1193–8.

Article  CAS  PubMed  Google Scholar 

Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2012;2(3):75–87.

Article  PubMed  PubMed Central  Google Scholar 

Tu BP, J.S.J. .T.J.o.c.b. Weissman. Oxidative Protein Fold Eukaryotes: Mech Consequences. 2004;164(3):341–6.

CAS  Google Scholar 

Schwochau GB, Nath KA. and M.E.J.K.i. Rosenberg, Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. 1998. 53(6): p. 1647–53.

Hong S-W et al. Clusterin protects lipotoxicity-induced apoptosis via upregulation of autophagy in insulin-secreting cells. 2020. 35(4): p. 943.

Kim JH et al. Protective effect of clusterin from oxidative stress–induced apoptosis in human retinal pigment epithelial cells. 2010. 51(1): p. 561–6.

Pucci S et al. Modulation of different clusterin isoforms in human colon tumorigenesis. 2004. 23(13): p. 2298–304.

Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflamm. 2018;15(1):199.

Article  Google Scholar 

Gonzalez CD, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy. 2011;7(1):2–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan J, et al. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res. 2015;3(1):1–6.

Article  Google Scholar 

Zhou T, et al. Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Rep. 2019;24(1):62–9.

Article  CAS  PubMed  Pu

留言 (0)

沒有登入
gif