CMR-based cardiac phenotyping in different forms of heart failure

Chioncel O, Lainscak M, Seferovic PM et al (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry. Eur J Heart Fail 19:1574–1585

Article  CAS  PubMed  Google Scholar 

Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J 37:2129–2200

Article  PubMed  Google Scholar 

McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

Article  CAS  PubMed  Google Scholar 

Park JJ, Park JB, Park JH, Cho GY (2018) Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol 71:1947–1957

Article  PubMed  Google Scholar 

Eitel I, Stiermaier T, Lange T et al (2018) Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging 11:1433–1444

Article  PubMed  Google Scholar 

Kammerlander AA, Kraiger JA, Nitsche C et al (2019) Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF. JACC Cardiovasc Imaging 12:1585–1587

Article  PubMed  Google Scholar 

Lange T, Gertz RJ, Schulz A et al (2023) Impact of myocardial deformation on risk prediction in patients following acute myocardial infarction. Front Cardiovascular Med 10:1199936

Article  Google Scholar 

Schuster A, Backhaus SJ, Stiermaier T et al (2019) Left atrial function with MRI enables prediction of cardiovascular events after myocardial infarction: insights from the AIDA STEMI and TATORT NSTEMI trials. Radiology 293:292–302

Article  PubMed  Google Scholar 

Kim J, Yum B, Palumbo MC et al (2020) Left atrial strain impairment precedes geometric remodeling as a marker of post-myocardial infarction diastolic dysfunction. JACC Cardiovasc Imaging 13:2099–2113

Article  PubMed  PubMed Central  Google Scholar 

Backhaus SJ, Stiermaier T, Lange T et al (2019) Atrial mechanics and their prognostic impact in Takotsubo syndrome: a cardiovascular magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging 20:1059–1069

Article  PubMed  Google Scholar 

Pezel T, AmbaleVenkatesh B, Kato Y et al (2021) Left atrioventricular coupling index to predict incident heart failure: the multi-ethnic study of atherosclerosis. Front Cardiovasc Med 8:704611

Article  PubMed  PubMed Central  Google Scholar 

Schmidt-Rimpler J, Backhaus SJ, Hartmann FP et al (2023) Impact of temporal and spatial resolution on atrial feature tracking cardiovascular magnetic resonance imaging. Int J Cardiol 396:131563

Article  PubMed  Google Scholar 

Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18:89

Article  PubMed  PubMed Central  Google Scholar 

Moustafa A, Khan MS, Alsamman MA, Jamal F, Atalay MK (2021) Prognostic significance of T1 mapping parameters in heart failure with preserved ejection fraction: a systematic review. Heart Fail Rev 26:1325–1331

Article  PubMed  Google Scholar 

Lopez B, Ravassa S, Moreno MU et al (2021) Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol 18:479–498

Article  PubMed  Google Scholar 

Zhu L, Wang Y, Zhao S, Lu M (2022) Detection of myocardial fibrosis: Where we stand. Front Cardiovasc Med 9:926378

Article  PubMed  PubMed Central  Google Scholar 

Hashemi D, Motzkus L, Blum M et al (2021) Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging. ESC Heart Fail 8:890–897

Article  PubMed  PubMed Central  Google Scholar 

Tanacli R, Hashemi D, Lapinskas T et al (2019) Range variability in CMR feature tracking multilayer strain across different stages of heart failure. Sci Rep 9:16478

Article  PubMed  PubMed Central  Google Scholar 

Hashemi D, Doeblin P, Blum M et al (2022) CMR detects decreased myocardial deformation in asymptomatic patients at risk for heart failure. Front Cardiovasc Med 9:1091768

Article  CAS  PubMed  Google Scholar 

Doeblin P, Hashemi D, Tanacli R et al (2019) CMR tissue characterization in patients with HFmrEF. J Clin Med 8:1877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blum M, Hashemi D, Motzkus LA et al (2020) Variability of myocardial strain during isometric exercise in subjects with and without heart failure. Front Cardiovasc Med 7:111

Article  PubMed  PubMed Central  Google Scholar 

Hashemi D, Doeblin P, Blum M et al (2023) Reduced functional capacity is associated with the proportion of impaired myocardial deformation assessed in heart failure patients by CMR. Front Cardiovasc Med 10:1038337

Article  PubMed  PubMed Central  Google Scholar 

Lange T, Backhaus SJ, Beuthner BE et al (2022) Functional and structural reverse myocardial remodeling following transcatheter aortic valve replacement: a prospective cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 24:45

Article  PubMed  PubMed Central  Google Scholar 

Pezel T, Venkatesh BA, De Vasconcellos HD et al (2021) Left Atrioventricular coupling index as a prognostic marker of cardiovascular events: the MESA study. Hypertension 78:661–671

Article  CAS  PubMed  Google Scholar 

Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 9:e004077

Article  PubMed  Google Scholar 

Backhaus SJ, Rosel SF, Stiermaier T et al (2022) Left-atrial long-axis shortening allows effective quantification of atrial function and optimized risk prediction following acute myocardial infarction. Eur Heart J Open 2:oeac053

Article  PubMed  PubMed Central  Google Scholar 

Kowallick JT, Kutty S, Edelmann F et al (2014) Quantification of left atrial strain and strain rate using cardiovascular magnetic resonance myocardial feature tracking: a feasibility study. J Cardiovasc Magn Reson 16:60

Article  PubMed  PubMed Central  Google Scholar 

von Roeder M, Blazek S, Rommel KP et al (2022) Changes in left atrial function in patients undergoing cardioversion for atrial fibrillation: relevance of left atrial strain in heart failure. Clin Res Cardiol 111:1028–1039

Article  Google Scholar 

Thomas L, Marwick TH, Popescu BA, Donal E, Badano LP (2019) Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review. J Am Coll Cardiol 73:1961–1977

Article  PubMed  Google Scholar 

Yang Y, Yin G, Jiang Y, Song L, Zhao S, Lu M (2020) Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study. J Cardiovasc Magn Reson 22:1

Article  PubMed  PubMed Central  Google Scholar 

Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA (2012) Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 59:442–451

Article  PubMed  Google Scholar 

Backhaus SJ, Lange T, Schulz A et al (2023) Cardiovascular magnetic resonance rest and exercise-stress left atrioventricular coupling index to detect diastolic dysfunction. Am J Physiol Heart Circ Physiol 324:H686–H695

Article  CAS  PubMed 

留言 (0)

沒有登入
gif