Towards edible robots and robotic food

Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

Article  CAS  PubMed  Google Scholar 

Sethi, S. S., Kovac, M., Wiesemüller, F., Miriyev, A. & Boutry, C. M. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat. Ecol. Evol. 6, 1245–1247 (2022).

Article  PubMed  Google Scholar 

Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33, 2004413 (2021).

Article  CAS  Google Scholar 

Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of drug release via intra body communication with an edible pill. Adv. Mater. Technol. 8, 2200731 (2023).

Article  CAS  Google Scholar 

Marik, P. E. Aspiration pneumonitis and aspiration pneumonia. N. Engl. J. Med. 344, 665–671 (2001).

Article  CAS  PubMed  Google Scholar 

Amirkolaie, A. K. Reduction in the environmental impact of waste discharged by fish farms through feed and feeding: aquaculture and the environment. Rev. Aquac. 3, 19–26 (2011).

Article  Google Scholar 

Just Economics. Dead loss: the high cost of poor farming practices and mortalities on salmon farms. Changing Markets Foundation https://www.justeconomics.co.uk/uploads/reports/Aquaculture-Report-v5.pdf (2021).

Pohlmann, K., Grasso, F. W. & Breithaupt, T. Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc. Natl Acad. Sci. USA 98, 7371–7374 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).

Article  CAS  Google Scholar 

Fraser, D. Toward a synthesis of conservation and animal welfare science. Anim. Welf. 19, 121–124 (2010).

Article  CAS  Google Scholar 

Fraser, D. Understanding animal welfare. Acta Vet. Scand. 50, S1 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Ashby, M. F. Materials selection in mechanical design. MRS Bull. 30, 994–997 (1999).

Google Scholar 

Radhakrishnan, V. Locomotion: dealing with friction. Proc. Natl Acad. Sci. USA 95, 5448–5455 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godshall, M. A., Eggleston, G., Thompson, J. & Kochergin, V. in Kirk-Othmer Encyclopedia of Chemical Technology 1–84 (Wiley, 2021).

Ramos, K. J. & Bahr, D. F. Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 22, 2037–2045 (2007).

Article  CAS  Google Scholar 

Eichhorn, S. J. & Young, R. J. The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197–207 (2001).

Article  CAS  Google Scholar 

Sun, C. True density of microcrystalline cellulose. J. Pharm. Sci. 94, 2132–2134 (2005).

Article  CAS  PubMed  Google Scholar 

Keetels, C. J. A. M., van Vliet, T. & Walstra, P. Relationship between the sponge structure of starch bread and its mechanical properties. J. Cereal Sci. 24, 27–31 (1996).

Article  Google Scholar 

Liu, Z. & Scanlon, M. G. Understanding and modeling the processing-mechanical property relationship of bread crumb assessed by indentation. Cereal Chem. 79, 763–767 (2002).

Article  CAS  Google Scholar 

Shintake, J., Sonar, H., Piskarev, E., Paik, J. & Floreano, D. Soft pneumatic gelatin actuator for edible robotics. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6221–6226 (IEEE, 2017).

Kwak, B., Shintake, J., Zhang, L. & Floreano, D. Towards edible drones for rescue missions: design and flight of nutritional wings. in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1802–1809 (IEEE, 2022).

Qi, Q., Keller, A., Tan, L., Kumaresan, Y. & Rossiter, J. Edible, optically modulating, shape memory oleogel composites for sustainable soft robotics. Mater. Des. 235, 112339 (2023).

Article  CAS  Google Scholar 

Bourlieu, C., Guillard, V., Vallès-Pàmies, B. & Gontard, N. in Food Materials Science: Principles and Practice Ch. 23 (Springer, 2008).

Yuan, Y. et al. Shellac: a promising natural polymer in the food industry. Trends Food Sci. Technol. 109, 139–153 (2021).

Article  CAS  Google Scholar 

Zhang, Y. et al. Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax. J. Colloid Interface Sci. 533, 742–749 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, D., Huang, J., Guo, Z. & Liu, W. Durable mixed edible wax coating with stretching superhydrophobicity. J. Mater. Chem. A 9, 1495–1499 (2021).

Article  CAS  Google Scholar 

Wösten, H. A. B. & Scholtmeijer, K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015).

Article  PubMed  Google Scholar 

Maulana, M. I. et al. Environmentally friendly starch-based adhesives for bonding high-performance wood composites: a review. Forests 13, 1614 (2022).

Article  Google Scholar 

Mukherjee, T., Lerma‐Reyes, R., Thompson, K. A. & Schrick, K. Making glue from seeds and gums: working with plant‐based polymers to introduce students to plant biochemistry. Biochem. Mol. Biol. Educ. 47, 468–475 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doll, K. M. & Erhan, S. Z. Evaluation of a sugar-based edible adhesive using a tensile strength tester. J. Lab. Autom. 16, 153–156 (2011).

Article  CAS  PubMed  Google Scholar 

Román, J. K. & Wilker, J. J. Cooking chemistry transforms proteins into high-strength adhesives. J. Am. Chem. Soc. 141, 1359–1365 (2019).

Article  PubMed  Google Scholar 

Schmidt, G. et al. Strong adhesives from corn protein and tannic acid. Adv. Sustain. Syst. 3, 1900077 (2019).

Article  CAS  Google Scholar 

Moubarik, A., Charrier, B., Allal, A., Charrier, F. & Pizzi, A. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Prod. 68, 167–177 (2010).

Article  CAS  Google Scholar 

North, M. A., Del Grosso, C. A. & Wilker, J. J. High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl. Mater. Interfaces 9, 7866–7872 (2017).

Article  CAS  PubMed  Google Scholar 

Cataldi, P. et al. An electrically conductive oleogel paste for edible electronics. Adv. Funct. Mater. 32, 2113417 (2022).

Article  CAS  Google Scholar 

Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

Article  PubMed  Google Scholar 

Wei, M., Gao, Y., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2016).

Article  Google Scholar 

Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

Article  Google Scholar 

Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).

Article  CAS  PubMed  Google Scholar 

Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

Article  CAS  PubMed  Google Scholar 

Sardesai, A. N. et al. Design and characterization of edible soft robotic candy actuators. MRS Adv. 3, 3003–3009 (2018).

Article  CAS  Google Scholar 

Hughes, J. & Rus, D. Mechanically programmable, degradable & ingestible soft actuators. in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 836–843 (IEEE, 2020).

Ahn, S., Kasi, R. M., Kim, S.-C., Sharma, N. & Zhou, Y. Stimuli-responsive polymer gels. Soft Matter 4, 1151–1157 (2008).

Article  CAS  PubMed  Google Scholar 

Yang, Z. et al. Stimulus-responsive hydrogels in food science: a review. Food Hydrocolloids 124, 107218 (2022).

Article  CAS  Google Scholar 

Djabourov, M., Nishinari, K. & Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers (Cambridge Univ. Press, 2013).

Keller, A. G., Qi, Q., Kumaresan, Y., Conn, A. T. & Rossiter, J. Biodegradable humidity actuators for sustainable soft robotics using deliquescent hydrogels. in 2023 IEEE International Conference on Soft Robotics (RoboSoft) 1–6 (IEEE, 2023).

Sarıyer, S., Duranoğlu, D., Doğan, Ö. & Küçük, İ. pH-responsive double network alginate/kappa-carrageenan hydrogel beads for controlled protein release: effect of pH and crosslinking agent. J. Drug Deliv. Sci. Technol. 56, 101551 (2020).

Article  Google Scholar 

Shigemitsu, H. et al. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 13, 165–172 (2018).

Article  CAS  PubMed  Google Scholar 

Ali, A. & Ahmed, S. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem. 66, 6940–6967 (2018).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif