Optimal parameter settings of thulium fiber laser for ureteral stone lithotripsy: a comparative study in two different testing environments

Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A et al (2020) Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 2:497–503. https://doi.org/10.1007/s00345-019-02785-9

Article  CAS  Google Scholar 

Soto-Palou F, Chen J, Medairos R, Zhong P et al (2023) In pursuit of the optimal dusting settings with the Thulium Fiber laser: an in Vitro Assessment. J Endourol 8:914–920. https://doi.org/10.1089/end.2023.0168

Article  Google Scholar 

Traxer O, Corrales M (2021) Managing Urolithiasis with Thulium Fiber laser: updated real-life Results-A systematic review. J Clin Med 15. https://doi.org/10.3390/jcm10153390

Meria P (2020) Re: Thulium Fiber laser: ready to Dust all urinary stone composition types? Eur Urol 6:926. https://doi.org/10.1016/j.eururo.2020.08.031

Article  CAS  Google Scholar 

Juliebo-Jones MSAE, Beisland P, Ulvik C O (2022) Temperature profiles during ureteroscopy with thulium fiber laser and holmium:YAG laser: findings from a pre-clinical study. Scand J Urol 4:313–319. https://doi.org/10.1080/21681805.2022.2104367

Article  CAS  Google Scholar 

Sierra A, Corrales M, Kolvatzis M, Panthier F et al (2022) Thermal Injury and Laser Efficiency with Holmium YAG and Thulium Fiber Laser-An in Vitro Study. J Endourol 12:1599–1606. https://doi.org/10.1089/end.2022.0216

Article  Google Scholar 

Molina WR, Carrera RV, Chew BH, Knudsen BE (2021) Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium-YAG laser (Ho:YAG). World J Urol 10:3951–3956. https://doi.org/10.1007/s00345-021-03619-3

Article  CAS  Google Scholar 

U.S. FaDA MAUDE Adverse Event Report: GYRUS ACMI, INC SOLTIVE PREMIUM SUPERPULSED LASER SYSTEM POWERED LASER SURGICAL INSTRUMENT (2021) https://wwwaccessdatafdagov/scripts/cdrh/cfdocs/cfMAUDE/detailcfm?mdrfoi__id=12043126&pc=GEX

Aldoukhi AH, Black KM, Hall TL, Ghani KR et al (2020) Defining thermally safe laser lithotripsy power and irrigation parameters: in Vitro Model. J Endourol 1:76–81. https://doi.org/10.1089/end.2019.0499

Article  Google Scholar 

Wang XK, Jiang ZQ, Tan J, Yin GM et al (2019) Thermal effect of holmium laser lithotripsy under ureteroscopy. Chin Med J (Engl) 16:2004–2007. https://doi.org/10.1097/CM9.0000000000000300

Article  Google Scholar 

Yildiz AK, Doluoglu OG, Kacan T, Keseroglu BB et al (2023) A new position utilizing the effect of gravity in proximal ureteral stones, ureteroscopic lithotripsy in the reverse Trendelenburg position: a prospective, randomized, comparative study. World J Urol 12:3695–3703. https://doi.org/10.1007/s00345-023-04654-y

Article  CAS  Google Scholar 

Elashry OM, Tawfik AM (2012) Preventing stone retropulsion during intracorporeal lithotripsy. Nat Rev Urol 12:691–698. https://doi.org/10.1038/nrurol.2012.204

Article  Google Scholar 

Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 6:787–800. https://doi.org/10.1016/0360-3016(84)90379-1

Article  Google Scholar 

Matlaga BR, Chew B, Eisner B, Humphreys M et al (2018) Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol 1:1–6. https://doi.org/10.1089/end.2017.0641

Article  Google Scholar 

Enikeev D, Taratkin M, Klimov R, Alyaev Y et al (2020) Thulium-fiber laser for lithotripsy: first clinical experience in percutaneous nephrolithotomy. World J Urol 12:3069–3074. https://doi.org/10.1007/s00345-020-03134-x

Article  CAS  Google Scholar 

Hong A, du Plessis J, Browne C, Jack G et al (2023) Mechanism of urosepsis: relationship between intrarenal pressures and pyelovenous backflow. BJU Int 5:512–519. https://doi.org/10.1111/bju.16095

Article  CAS  Google Scholar 

Tzou DT, Taguchi K, Chi T, Stoller ML (2016) Animal models of urinary stone disease. Int J Surg Pt D 596–606. https://doi.org/10.1016/j.ijsu.2016.11.018

Kronenberg P, Traxer O (2019) The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review. Transl Androl Urol Suppl 4:S398–S417. https://doi.org/10.21037/tau.2019.08.01

Article  Google Scholar 

Liu DY, He HC, Wang J, Tang Q et al (2012)ureteroscopic lithotripsy using holmium laser for 187 patients with proximal ureteral stones. Chin Med J (Engl) 9: 1542–1546

Peng Y, Liu M, Ming S, Yu W et al (2020) Safety of a Novel Thulium Fiber laser for lithotripsy: an in Vitro Study on the Thermal Effect and its impact factor. J Endourol 1:88–92. https://doi.org/10.1089/end.2019.0426

Article  Google Scholar 

Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 12:1308–1312. https://doi.org/10.1089/end.2017.0679

Article  Google Scholar 

Belle JD, Chen R, Srikureja N, Amasyali AS et al (2022) Does the Novel Thulium Fiber Laser have a higher risk of Urothelial Thermal Injury than the Conventional Holmium laser in an in vitro. Study? J Endourol 9:1249–1254. https://doi.org/10.1089/end.2021.0842

Article  Google Scholar 

Enikeev D, Grigoryan V, Fokin I, Morozov A et al (2021) Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience. Int J Urol 3:261–265. https://doi.org/10.1111/iju.14443

Article  CAS  Google Scholar 

Æsøy MS, Juliebø-Jones P, Beisland C, Ulvik Ø (2024) temperature measurements during flexible ureteroscopic laser lithotripsy: a prospective clinical trial. J Endourol 4:308–315. https://doi.org/10.1089/end.2023.0660

Article  Google Scholar 

Wilson CR, Hardy LA, Irby PB, Fried NM (2015) Collateral damage to the ureter and Nitinol stone baskets during thulium fiber laser lithotripsy. Lasers Surg Med 5:403–410. https://doi.org/10.1002/lsm.22348

Article  Google Scholar 

Emiliani E, Talso M, Haddad M, Pouliquen C et al (2018) the true ablation effect of Holmium YAG laser on soft tissue. J Endourol 3:230–235. https://doi.org/10.1089/end.2017.0835

Article  Google Scholar 

Chew BH, Brotherhood HL, Sur RL, Wang AQ et al (2016) Natural history, complications and Re-intervention Rates of asymptomatic residual stone fragments after Ureteroscopy: a report from the EDGE Research Consortium. J Urol 4 Pt 1:982–986. https://doi.org/10.1016/j.juro.2015.11.009

Article  Google Scholar 

Weiss B, Shah O (2016) Evaluation of dusting versus basketing - can new technologies improve stone-free rates? Nat Rev Urol 12:726–733. https://doi.org/10.1038/nrurol.2016.172

Article  CAS  Google Scholar 

Jiao B, Luo Z, Xu X, Zhang M et al (2019) Minimally invasive percutaneous nephrolithotomy versus retrograde intrarenal surgery in surgical management of upper urinary stones - a systematic review with meta-analysis. Int J Surg 1–11. https://doi.org/10.1016/j.ijsu.2019.09.005

Scotland KB, Almutairi K, Park E, Wang L et al (2023) Indwelling stents cause obstruction and induce ureteral injury and fibrosis in a porcine model. BJU Int 3:367–375. https://doi.org/10.1111/bju.15912

Article  Google Scholar 

留言 (0)

沒有登入
gif