Cancer data analysis using competitive ensemble machine learning techniques

Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:1–21.

Article  Google Scholar 

Siegel RL, Miller KD. A cancer journal of clinicians. ACS journals published by Wiley Periodicals LLC on behalf of American Cancer Society. 2023.

Google Scholar 

Emens LA, Loi S. Immunotherapy approaches for breast cancer patients in 2023. Cold Spring Harb Perspect Med. 2023;13(4): a041332. https://doi.org/10.1101/cshperspect.a041332.

Article  Google Scholar 

Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, Nallasamy V, John A, Narasimhan S, Roselind FS, ICMR-NCDIR-NCRP Investigator Group. Cancer statistics, 2020: report from national cancer registry programme, India. JCO Glob Oncol. 2020;6:1063–75.

Article  Google Scholar 

Lu M, Chen C, Huo J, Wang X. Multi-stage decision tree based on inter-class margin of SVM. In: Proceedings of the IEEE International Conference on System, Man and Cybernetics. USA: IEEE; 2009. p. 1875–80.

Google Scholar 

Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389–422.

Article  Google Scholar 

Rokach L, Chizi B, Maimon O. A methodology for improving the performance of non-ranker feature selection filters. Int J Pattern Recognit Artif Intell. 2007;21:809–30.

Article  Google Scholar 

Guan D, Yuan W, Lee YK, Najeebullah K, Rasel MK. A review of ensemble learning based feature selection. IETE Tech Rev. 2014;31(3):190–8.

Article  Google Scholar 

Yu Y, Niu T, Wang J, Jiang H. Intermittent solar power hybrid forecasting system based on pattern recognition and feature extraction. Energy Convers Manage. 2023;277:116579 Elsevier.

Article  Google Scholar 

Seijo-Pardo B, Porto-Diaz I, Bolón-Canedo V, Alonso-Betanzos A. Ensemble feature selection: homogeneous and heterogeneous approaches. Knowl Based Syst. 2017;118:124–39.

Article  Google Scholar 

Kim Y, Chung E, Cho H, Byun K, Kim D. The future water vulnerability assessment of the Seoul metropolitan area using a hybrid framework composed of physically-based and deep-learning-based hydrologic models. Stoch Environ Res Risk Assess. 2023;37(5):1777–98. https://doi.org/10.1007/s00477-022-02366-0.

Article  Google Scholar 

Altidor W, Khoshgoftaara T, Van Hulse J, Napolitano A. Ensemble feature ranking methods for data intensive computing applications. Handbook of data intensive computing. New York: Springer; 2011.

Google Scholar 

Morid MA, Kawamoto K, Ault T, et al. Supervised learning methods for predicting healthcare costs: systematic literature review and empirical evaluation. In: Annual symposium proceedings. AMIA; 2018.

Google Scholar 

Zomaya A. Stability of feature selection algorithms and ensemble feature selection methods in bioinformatics. In: Biological knowledge discovery handbook: preprocessing, mining, and post processing of biological data. 2013.

Google Scholar 

Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection techniques. In: ECML PKDD 2008: machine learning and knowledge discovery in databases. Springer; 2008. p. 313–25.

Google Scholar 

Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics. 2015;16:1–11.

Article  Google Scholar 

Wald R, Khoshgoftaar T, Dittman D, Awada W, Napolitano A. An extensive comparison of feature ranking aggregation techniques in bioinformatics. IEEE; 2012. p. 377–84.

Google Scholar 

Tang J, Alelyani S, Liu H. Feature selection for classification: a review. In: Aggarwal CC Data classification: algorithms and applications. Boca Raton: CRC; 2014.

Google Scholar 

Khan MM, Islam S, Sarkar S, Ayaz FI, Kabir MM, Tazin T, Albraikan AA, Almalki F. A, Machine learning based comparative analysis for breast cancer prediction. J Healthc Eng. 2022;1–15. https://doi.org/10.1155/2022/4365855.

Rahimian F, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records. PLoS Med. 2018. https://doi.org/10.1371/journal.pmed.1002695.

Article  Google Scholar 

Diviya Prabha V, Rathipriya R. Sentimental analysis using capsule network with gravitational search algorithm. J Web Eng. 2020. https://doi.org/10.13052/jwe1540-9589.19569.

Article  Google Scholar 

Chen H, Wang N, Du X, Mei K, Zhou Y, Cai G. Classification prediction of breast cancer based on MachineLearning. Comput Intell Neurosci. 2023;2023:6530719. 9 pages.

Article  Google Scholar 

Nai-Arun N, Sittidech P. Ensemble learning model for diabetes classification. Adv Mater Res. 2014;931–932:1427–31. https://doi.org/10.4028/www.scientific.net/amr.931-932.1427.

Article  Google Scholar 

Jolliffe I. Principal component analysis. Wiley Online Library; 2005.

Google Scholar 

Raja R, Sarkar BK. Chap. 12 - an entropy-based hybrid feature selection approach for medical datasets. In: Intelligent data-centric systems, machine learning, big data, and IoT for medical informatics. Academic Press; 2021. p. 201–14.

Google Scholar 

Muhammad Fayaz A, Khan JU, Rahman A, Alharbi M, Irfan Uddin BA. Ensemble machine learning model for classification of spam product reviews. Complexity. 2020;2020:8857570. 10 pages.

Google Scholar 

Liang G, et al. An empirical study of bagging predictors for imbalanced data with different levels of class distribution. In: AI 2011: Advances in artificial intelligence. 2011. p. 213–22. https://doi.org/10.1007/978-3-642-25832-9_22.

Chapter  Google Scholar 

Dogru A, Buyrukglu S, Arı M. A hybrid super ensemble learning model for the early-stage prediction of diabetes risk. Med Biol Eng Comput. 2023;61(3):1–13.

Article  Google Scholar 

Buyrukoğlu S, Savaş S. Stacked-based ensemble machine learning model for positioning footballer. Arab J Sci Eng. 2023;48(2):1371–83.

Article  Google Scholar 

Singh H, Rana PS, Singh U. Prediction of drug synergy in cancer using ensemble-based machine learning techniques. Mod Phys Lett B. 2018;32(11):1850132.

Article  Google Scholar 

Lu J, Song E, Ghoneim A, Alrashoud M. Machine learning for assisting cervical cancer diagnosis: an ensemble approach. Future Gener Comput Syst. 2020;106:199–205.

Article  Google Scholar 

Mohammed A, Kora R. A comprehensive review on ensemble deep learning: opportunities and challenges. J King Saud Univ Comput Inf Sci. 2023;35(2):757–74.

Google Scholar 

Epimack M, Ma H, Li H, Qi S. An optimized framework for breast cancer classification using machine learning. Biomed Res Int. 2022;2022:8482022.

Google Scholar 

Wang Y, Wang D, Geng N, Wang Y, Yin Y, Jin Y. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Appl Soft Comput. 2019;77:188–204.

Article  Google Scholar 

Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2016. p. 785–94.

Chapter  Google Scholar 

Mahajan P, Uddin S, Hajati F, Moni MA. Ensemble learning for disease prediction: a review. Healthcare. 2023;11(12):1808. https://doi.org/10.3390/healthcare11121808.

Article  Google Scholar 

Chowdhury S, Schoen MP. Research paper classification using supervised machine learning techniques. In: 2020 intermountain engineering, technology and computing (IETC). UT, USA: Orem; 2020. p. 1–6.

Google Scholar 

Zhang Y, Zhang Y, Zhou G, Zhang W, Li K, Mu Q, He W, Tang K. A new ensemble learning method for multiple fusion weighted evidential reasoning rule. J Electr Comput Eng. 2023;2023:8987461. 15 pages.

Google Scholar 

Naderalvojoud B, Hernandez-Boussard T. Improving machine learning with ensemble learning on observational healthcare data. AMIA Annu Symp Proc. 2024;2023:521–9. PMID: 38222353; PMCID: PMC10785929.

Google Scholar 

Esfandiari N, Babavalian MR, Ma A. Knowledge discovery in medicine: current issue and future trend. Expert Syst Appl. 2014;41(9):4434–63.

Article  Google Scholar 

Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.

Google Scholar 

Cios K, Moore G. Uniqueness of medical data mining. Artif Intell Med. 2002;26(1–2):1–24.

Article  Google Scholar 

Abellana DP, Lao DM. A new univariate feature selection algorithm based on the best–worst multi-attribute decision-making method. Decis Analytics J. 2023;7:100240.

Article  Google Scholar 

He Y, Yu H, Yu R, Song J, Lian H, He J, Yuan J. A correlation-based feature selection algorithm for operating data of nuclear power plants. Sci Technol Nucl Install. 2021;2021:9994340 15 pages.

Article  Google Scholar 

Alfian G, Syafrudin M, Fahrurrozi I, Fitriyani NL, Atmaji FTD, Widodo T, Bahiyah N, Benes F, Rhee J. Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method. Computers. 2022;11(9):136.

Article  Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer statistics 2020. CA Cancer J Clin. 2020;70(4):7–30.

Article  Google Scholar 

Thockchom N, Singh MM, Nandi U. A novel ensemble learning-based model for network intrusion detection. Complex Intell Syst. 2023. https://doi.org/10.1007/s40747-023-01013-7.

Article  Google Scholar 

van Weverwijk A, DE Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer. 2023;23(4):193–215. https://doi.org/10.1038/s41568-022-00544-4. Epub. PMID: 36717668.

Article  Google Scholar 

Zhou Z-H. Ensemble Methods. 2012. https://doi.org/10.1201/b12207.

Article  Google Scholar 

Xu W, et al. Differential analysis of disease risk assessment using binary logistic regression with different analysis strategies. J Int Med Res. 2018;46(9):3656–64. https://doi.org/10.1177/0300060518777173.

Article  Google Scholar 

Agresti A. Logistic regression. Wiley Series in Probability and Statistics; 2007.

Google Scholar 

Liu H, Motoda H. Feature selection for knowledge discovery and data mining. Springer; 1998.

Book  Google Scholar 

UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original. Accessed 4 Oct 2023.

UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/451/breast+cancer+coimbra. Accessed 4 Oct 2023.

UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/383/cervical+cancer+risk+factors. Accessed 4 Oct 2023.

留言 (0)

沒有登入
gif