Colour fusion effect on deep learning classification of uveal melanoma

Singh AD, Belfort RN, Sayanagi K, Kaiser PK. Fourier domain optical coherence tomographic and auto-fluorescence findings in indeterminate choroidal melanocytic lesions. Br J Ophthalmol 2010;94:474–8.

Article  PubMed  Google Scholar 

Singh AD, Grossniklaus HE. What’s in a name? Large choroidal nevus, small choroidal melanoma, or indeterminate melanocytic tumor. Ocul Oncol Pathol. 2021;7:235–8.

Article  PubMed  PubMed Central  Google Scholar 

Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118:1881–5.

Article  PubMed  Google Scholar 

Spagnolo F, Caltabiano G, Queirolo P. Uveal melanoma. Cancer Treat Rev. 2012;38:549–53.

Article  PubMed  Google Scholar 

Kujala E, Makitie T, Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Investig Ophthalmol Vis Sci. 2003;44:4651–9.

Article  Google Scholar 

Chien JL, Sioufi K, Surakiatchanukul T, Shields JA, Shields CL. Choroidal nevus: a review of prevalence, features, genetics, risks, and outcomes. Curr Opin Ophthalmol. 2017;28:228–37.

Article  PubMed  Google Scholar 

Shields CL, Shields JA, Kiratli H, Depotter P, Cater JR. Risk-factors for growth and metastasis of small choroidal melanocytic lesions. Ophthalmology. 1995;102:1351–61.

Article  CAS  PubMed  Google Scholar 

Tseng LJ, Matsuyama A, MacDonald-Dickinson V. Histology: the gold standard for diagnosis? Can Vet J. 2023;64:389–91.

PubMed  PubMed Central  Google Scholar 

Zhou J, Sun HC, Wang Z, Cong WM, Wang JH, Zeng MS, et al. Guidelines for diagnosis and treatment of primary liver cancer in China (2017 Edition). Liver Cancer. 2018;7:235–60.

Article  PubMed  PubMed Central  Google Scholar 

Shyamala K, Girish H, Murgod S. Risk of tumor cell seeding through biopsy and aspiration cytology. J Int Soc Prev Community Dent. 2014;4:5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang PH, Shields RA, Mruthyunjaya P, Schefler AC. Biopsy of a choroidal melanoma using transvitreal pars plana vitrectomy. Ophthalmic Surg, Lasers Imaging Retin. 2018;49:645–7.

Article  Google Scholar 

Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135:1170–6.

Article  PubMed  PubMed Central  Google Scholar 

Matsuba S, Tabuchi H, Ohsugi H, Enno H, Ishitobi N, Masumoto H, et al. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. Int Ophthalmol. 2019;39:1269–75.

Article  PubMed  Google Scholar 

Le D, Alam M, Yao CK, Lim JI, Hsieh YT, Chan RV, et al. Transfer learning for automated OCTA detection of diabetic retinopathy. Transl Vis Sci Technol 2020;9:35.

Article  PubMed  PubMed Central  Google Scholar 

Ting DS, Cheung CY, Lim G, Tan GS, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimi B, Le D, Abtahi M, Dadzie AK, Lim JI, Chan RP, et al. Optimizing the OCTA layer fusion option for deep learning classification of diabetic retinopathy. Biomed Opt Express. 2023;14:4713–24.

Article  PubMed  PubMed Central  Google Scholar 

Alam M, Thapa D, Lim JI, Cao D, Yao X. Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography. Biomed Opt Express. 2017;8:4206–16.

Article  PubMed  PubMed Central  Google Scholar 

Cai S, Parker F, Urias MG, Goldberg MF, Hager GD, Scott AW. Deep learning detection of sea fan neovascularization from ultra-widefield color fundus photographs of patients with sickle cell hemoglobinopathy. JAMA Ophthalmol. 2021;139:206–13.

Article  PubMed  Google Scholar 

Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125:1199–206.

Article  PubMed  Google Scholar 

Fu H, Cheng J, Xu Y, Zhang C, Wong DW, Liu J, et al. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging. 2018;37:2493–501.

Article  PubMed  Google Scholar 

Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018;441:41–9.

Article  Google Scholar 

Chandrabhatla AS, Horgan TM, Cotton CC, Ambati NK, Shildkrot YE. Clinical applications of machine learning in the management of intraocular cancers: a narrative review. Investig Ophthalmol Vis Sci. 2023;64:29.

Article  Google Scholar 

Gómez-Valverde JJ, Antón A, Fatti G, Liefers B, Herranz A, Santos A, et al. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express. 2019;10:892–913.

Article  PubMed  PubMed Central  Google Scholar 

Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172:1122–31.e9.

Article  CAS  PubMed  Google Scholar 

Li Y, El Habib Daho M, Conze PH, Al Hajj H, Bonnin S, Ren H, et al. Multimodal information fusion for glaucoma and diabetic retinopathy classification. Springer; 2022. p. 53–62.

Hervella AS, Rouco J, Novo J, Ortega M. Retinal microaneurysms detection using adversarial pre-training with unlabeled multimodal images. Inf Fusion. 2022;79:146–61.

Article  Google Scholar 

Ryu G, Lee K, Park D, Kim I, Park SH, Sagong M. A deep learning algorithm for classifying diabetic retinopathy using optical coherence tomography angiography. Transl Vis Sci Technol 2022;11:39.

Article  PubMed  PubMed Central  Google Scholar 

Abtahi M, Le D, Ebrahimi B, Dadzie AK, Lim JI, Yao X. An open-source deep learning network AVA-Net for arterial-venous area segmentation in optical coherence tomography angiography. Commun Med. 2023;3:54.

Article  PubMed  PubMed Central  Google Scholar 

Khan MB, Ahmad M, Yaakob SB, Shahrior R, Rashid MA, Higa H. Automated diagnosis of diabetic retinopathy using deep learning: on the search of segmented retinal blood vessel images for better performance. Bioengineering. 2023;10:413.

Article  PubMed  PubMed Central  Google Scholar 

Islam MT, Al-Absi HRH, Ruagh EA, Alam T. DiaNet: a deep learning based architecture to diagnose diabetes using retinal images only. Ieee Access. 2021;9:15686–95.

Article  Google Scholar 

Mishra S, Hanchate S, Saquib Z. Diabetic retinopathy detection using deep learning. In Proceedings of the international conference on smart technologies in computing, electrical and electronics (ICSTCEE) 2020. IEEE;2020. p. 515–520.

Dugas E, Jared J, Cukierski W. Diabetic retinopathy detection. 2015. https://kaggle.com/competitions/diabetic-retinopathy-detection.

Qiu M, Shields CL. Choroidal nevus in the United States adult population: racial disparities and associated factors in the National Health and Nutrition Examination Survey. Ophthalmology. 2015;122:2071–83.

Article  PubMed  Google Scholar 

Gordon‐Shaag A, Barnard S, Millodot M, Gantz L, Chiche G, Vanessa E, et al. Prevalence of choroidal naevi using scanning laser ophthalmoscope. Ophthalmic Physiol Opt 2014;34:94–101.

Article  PubMed  Google Scholar 

Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973−1997. Ophthalmology. 2003;110:956–61.

Article  PubMed  Google Scholar 

Bergman L, Seregard S, Nilsson B, Ringborg U, Lundell G, Ragnarsson-Olding B. Incidence of uveal melanoma in Sweden from 1960 to 1998. Invest Ophthalmol Vis Sci. 2002;43:2579–83.

PubMed  Google Scholar 

Ma F, Yuan M, Kozak I. Multispectral imaging (MSI): review of current applications. Surv Ophthalmol. 2023;68:889–904.

Article  PubMed  Google Scholar 

Zhang H, Salo D, Kim DM, Komarov S, Tai YC, Berezin MY. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. J Biomed Opt. 2016;21:126006.

Article  PubMed  PubMed Central  Google Scholar 

Papastefanou VP, Al-Jamal RA, Ali ZC, Cohen VM, Gray J, Sagoo MS, et al. Ultra-wide-field imaging assessment of small choroidal pigmented lesions using red and green colour channels. Eye. 2021;35:282–8.

Article  CAS  PubMed  Google Scholar 

Sergott RC. Retinal segmentation using multicolor laser imaging. J Neuro-Ophthalmol. 2014;34:S24–S28.

Article  Google Scholar 

Terasaki H, Sonoda S, Kakiuchi N, Shiihara H, Yamashita T, Sakamoto T. Ability of MultiColor scanning laser ophthalmoscope to detect non-glaucomatous retinal nerve fiber layer defects in eyes with retinal diseases. BMC Ophthalmol. 2018;18:324.

Article  PubMed  PubMed Central  Google Scholar 

Shields CL, Kels JG, Shields JA. Melanoma of the eye: revealing hidden secrets, one at a time. Clin Dermatol. 2015;33:183–96.

Article  PubMed  Google Scholar 

Group COMS. Baseline echographic characteristics of tumors in eyes of patients enrolled in the Collaborative Ocular Melanoma Study: COMS report no. 29. Ophthalmology. 2008;115:1390–7.e2.

Article 

留言 (0)

沒有登入
gif