Enhancing tumor’s skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation

Pashazadeh A, Boese A, Friebe M (2019) Radiation therapy techniques in the treatment of skin cancer: an overview of the current status and outlook. J Dermatological Treat, page 1–41

Jeynes JCG, Wordingham F, Moran LJ et al (2019) Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using NP’s. Biomolecules 9(3):343

Article  PubMed  PubMed Central  Google Scholar 

Bohara RA (2019) Introduction and types of Hybrid nanostructures for Medical Applications. Hybrid Nanostructures for Cancer Theranostics

Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918

Article  PubMed  PubMed Central  Google Scholar 

Martı́nez Maestro D, del Rosal L (2014) Jaque. NP’s for photothermal therapies. Nanoscale 6(16):9494–9530

Article  PubMed  Google Scholar 

Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

Article  CAS  PubMed  Google Scholar 

Ivan H, El-Sayed X, Huang, Mostafa A, El-Sayed (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated GNP’s. Nano Lett 5(5):829–834

Article  Google Scholar 

Xiaohua Huang Ivan H, El-Sayed W, Qian, Mostafa A, El-Sayed (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

Article  Google Scholar 

Marcella MAURO, Matteo CROSERA, Carlotta BIANCO et al (2015) Permeation of platinum and rhodium NP’s through intact and damaged human skin. J Nanopart Res 17:1–11

Google Scholar 

Valentine RM, Ibbotson SH, Wood K, Brown CT, Moseley H (2013) Modelling fluorescence in clinical photodynamic therapy. Photochem Photobiol Sci 12(1):203–213

Article  CAS  PubMed  Google Scholar 

Campbell CL, Brown CT, Wood K, Moseley H Modelling topical photodynamic therapy treatment including the continuous production of protoporphyrin ix. Phys Med Biol., 61(21):7507–7521.,2016.

Campbell CL, Wood K, Brown CT, Moseley H (2016) Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Phys Med Biol 61(13):4840–4854

Article  CAS  PubMed  Google Scholar 

Zeng L, Gowda BHJ, Ahmed MG et al (2023) Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 22:10. https://doi.org/10.1186/s12943-022-01708-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D (2021) GNP’s in Cancer Theranostics. Front Bioeng Biotechnol 9:647905. https://doi.org/10.3389/fbioe.2021.647905

Article  PubMed  PubMed Central  Google Scholar 

Cuplov V, Pain F, Jan S (2017) Simulation of nanoparticle-mediated near-infrared thermal therapy using gate. Biomed Opt Express 8(3):1665–1681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D, Kim H (2022) Optimization of Photothermal Therapy Treatment Effect under various laser irradiation conditions. Int J Mol Sci 23(11):5928. https://doi.org/10.3390/ijms23115928PMID: 35682607; PMCID: PMC9180462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D, Kim H (2023) Analysis of temperature behavior in biological tissue in photothermal therapy according to laser irradiation angle. Bioengineered 14(1):2252668. https://doi.org/10.1080/21655979.2023.2252668PMID: 37661750; PMCID: PMC10478739

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D, Paik J, Kim H (2023) Effect of GNP’s distribution radius on photothermal therapy efficacy. Sci Rep 13(1):12135. https://doi.org/10.1038/s41598-023-39040-6PMID: 37495612; PMCID: PMC10371995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanamori T, Miyazaki N, Aoki S et al (2021) Investigation of energy metabolic dynamism in hyperthermia-resistant ovarian and uterine cancer cells under heat stress. Sci Rep 11:14726. https://doi.org/10.1038/s41598-021-94031-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiaoren Tang Feng Cao Weiyuan Ma at al (2020) Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Practical Oncol Radiotherapy 25:323–326

Article  Google Scholar 

Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184

Article  PubMed  Google Scholar 

Gaipl US, Datta NR, Ordonez SG et al (2016) Local hyperthermia in combined modality treatment of cancer. Crit Rev Oncol Hematol 97:200–210

Google Scholar 

Mayer A, Vaupel P (2012) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Med Hemother 39:302–308

Google Scholar 

Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303

Article  CAS  Google Scholar 

Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278

Article  Google Scholar 

Wang W, Han T, Zhang X, Wu H, Yongan Shui (2007) &. Rayleigh Wave Reflection and Scattering Calculation by Source Regeneration Method. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(7), 1445–1453https://doi.org/10.1109/tuffc.2007.405

Gucker FT, Lin H-M (1971) A method of verifying the coefficients an and bn of the Mie theory of light scattering by nonabsorbing isotropic spheres. Journal of Colloid and Interface Science, 35(1), 139–142https://doi.org/10.1016/0021-9797(71)90194-9

Rajat Acharya (2017) Chap. 3 - Interaction of waves with medium, Editor(s): Rajat Acharya, Satellite Signal Propagation, Impairments and Mitigation, Academic Press, Pages 57–86, ISBN 9780128097328, https://doi.org/10.1016/B978-0-12-809732-8.00003-X

Setchfield K, Gorman A, Simpson AHRW, Somekh MG, Wright AJ (2023) Relevance and utility of the in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]. Biomed Opt Express 14(7):3555–3583. https://doi.org/10.1364/BOE.493588

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Reviews Mater 1:16014

Article  CAS  Google Scholar 

Chauhan VP et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polyanskiy MN (2024) Refractiveindex.info database of optical constants. Sci Data 11:94. https://doi.org/10.1038/s41597-023-02898-2

Article  PubMed  PubMed Central  Google Scholar 

Tuersun A, Yusufu P, Yimiti T, Sidike A (2017) Refractive index sensitivity analysis of GNP’s. Optik 149:384–390

Article  CAS  Google Scholar 

Dajun Fan Rongjie Li Minghan He (2023) Review of refractive index-matching techniques of polymethyl methacrylate in flow field visualization experiments. Int J Energy Res. https://doi.org/10.1155/2023/3413380

Article  Google Scholar 

Aleksandar Z, Tasic Bojan D, Djordjevic Dusan K, Grozdanic, Radojkovic N (1992) Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J Chem Eng Data 37(3):310–313

Article  Google Scholar 

YAKUBOVSKY Dmitry I, STEBUNOV Yury VKIRTAEV, Roman V et al Ultrathin and ultrasmooth gold films on monolayer mos2. Advanced Materials Interfaces, Volume 2023(Article ID 3413380):1900196

Hale GM, Querry MR (1973) Optical constants of water in the 200 nm to 200 µm wavelength region. Appl Opt 12:555–563

Article  CAS  PubMed  Google Scholar 

Shrivastav RP, Sardar DK (2004) Interaction of laser radiation with biological materials: a review. Prog Quantum Electron 28(1):1–43

Google Scholar 

Venugopalan V, Vogel A (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644

Article  PubMed  Google Scholar 

Fan H, Chen S, Du Z, Yan T, Alimu G, Zhu L, Ma R, Alifu N, Zhang X (2022) New indocyanine green therapeutic fluorescence nanoprobes assisted high-efficient photothermal therapy for cervical cancer. Dye Pigment 200:110174

Article  CAS  Google Scholar 

Ren Y, Qi H, Chen Q, Ruan L (2017) Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int J Heat Mass Transf 106:212–221

Article  CAS  Google Scholar 

Lilge SL (2013) and R. P. G. Brinkmann. Laser Induced Thermal effects in Biological tissues in Encyclopedia of Biophysics G. C. K. Roberts Ed. Springer, Berlin Heidelberg, pp 1299–1305

Google Scholar 

Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV (2022) Photothermal and photodynamic therapy of tumors with Plasmonic nanoparticles: challenges and prospects. Mater (Basel) 15(4):1606. https://doi.org/10.3390/ma15041606

Article  CAS  Google Scholar 

Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V (2019) Application of nanoparticles and nanomaterials in thermal ablation therapy of Cancer. Nanomaterials (Basel) 9(9):1195. https://doi.org/10.3390/nano9091195

Article  CAS  PubMed  Google Scholar 

D’Acunto M, Cioni P, Gabellieri E, Presciuttini G (2021) Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 32(19):192001. https://doi.org/10.1088/1361-6528/abe1ed

Article  CAS  PubMed  Google Scholar 

Yujuan Zhang Xuelin Zhan Juan Xiong (2018) Temperature-dependent cell death patterns induced by functionalized.com/scientific reports/, 8:8720(DOI:10.1038/s41598-018-26978-1):1–8

留言 (0)

沒有登入
gif