Liquid-metal-based magnetic fluids

Stöhr, J. & Siegmann, H. C. in Magnetism 61–103 (Springer, 2006).

Rosensweig, R. E. Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437–461 (1987).

Article  Google Scholar 

Chantrell, R. W., Bradbury, A., Popplewell, J. & Charles, S. W. Agglomerate formation in a magnetic fluid. J. Appl. Phys. 53, 2742–2744 (1982).

Article  CAS  Google Scholar 

De Vicente, J., Klingenberg, D. J. & Hidalgo-Alvarez, R. Magnetorheological fluids: a review. Soft Matter 7, 3701 (2011).

Article  Google Scholar 

Philip, J. Magnetic nanofluids (ferrofluids): recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 311, 102810 (2023).

Article  CAS  PubMed  Google Scholar 

Butter, K., Bomans, P. H. H., Frederik, P. M., Vroege, G. J. & Philipse, A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2, 88–91 (2003).

Article  CAS  PubMed  Google Scholar 

Dunne, P. et al. Liquid flow and control without solid walls. Nature 581, 58–62 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. Science 365, 264–267 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559, 77–82 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, J. et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 12, 7136 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seol, M.-L., Jeon, S.-B., Han, J.-W. & Choi, Y.-K. Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017).

Article  CAS  Google Scholar 

Puga, J. B. et al. Novel thermal switch based on magnetic nanofluids with remote activation. Nano Energy 31, 278–285 (2017).

Article  CAS  Google Scholar 

Nkurikiyimfura, I., Wang, Y. & Pan, Z. Heat transfer enhancement by magnetic nanofluids — a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013).

Article  CAS  Google Scholar 

Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. Proc. Natl Acad. Sci. USA 119, e2203116119 (2022).

Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mertelj, A., Lisjak, D., Drofenik, M. & Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 504, 237–241 (2013).

Article  CAS  PubMed  Google Scholar 

Clark, N. A. Ferromagnetic ferrofluids. Nature 504, 229–230 (2013).

Article  CAS  PubMed  Google Scholar 

Rosensweig, R. E. Ferrohydrodynamics (Cambridge Univ. Press, 1997).

Ashtiani, M., Hashemabadi, S. H. & Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 374, 716–730 (2015).

Article  CAS  Google Scholar 

Chen, S., Wang, H. Z., Zhao, R. Q., Rao, W. & Liu, J. Liquid metal composites. Matter 2, 1446–1480 (2020).

Article  Google Scholar 

Yan, J., Lu, Y., Chen, G., Yang, M. & Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47, 2518–2533 (2018).

Article  CAS  PubMed  Google Scholar 

Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

Article  CAS  PubMed  Google Scholar 

& Wang, D. et al. Liquid metal combinatorics toward materials discovery. Adv. Mater. 35, 2303533 (2023).

Article  CAS  Google Scholar 

Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat. Commun. 13, 5576 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khoshmanesh, K. et al. Liquid metal enabled microfluidics. Lab Chip 17, 974–993 (2017).

Article  CAS  PubMed  Google Scholar 

Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

Article  CAS  PubMed  Google Scholar 

Mao, G. et al. Soft electromagnetic actuators. Sci. Adv. https://doi.org/10.1126/sciadv.abc0251 (2020).

Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. https://doi.org/10.1126/scirobotics.abg2171 (2022).

Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20, 851–858 (2021).

Article  CAS  PubMed  Google Scholar 

Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

Article  CAS  PubMed  Google Scholar 

Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023).

Article  Google Scholar 

Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

Article  CAS  PubMed  Google Scholar 

Liu, G. et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium–indium liquid metal–air battery operated at room temperature. Adv. Energy Mater. 8, 1–9 (2018).

Article  Google Scholar 

Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Zuraiqi, K. et al. Liquid metals in catalysis for energy applications. Joule 4, 2290–2321 (2020).

Article  CAS  Google Scholar 

Agno, K.-C. et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01116-z (2023).

Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. Nat. Electron. 6, 779–789 (2023).

Article  Google Scholar 

Nan, K. et al. Low-cost gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. Nat. Biomed. Eng. 6, 1092–1104 (2022).

Article  CAS  PubMed  Google Scholar 

Greenwood, N. N. in Advances in Inorganic Chemistry and Radiochemistry Vol. 5, 91–134 (1963).

Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, 1–11 (2021).

CAS  Google Scholar 

Chang, H. et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv. Mater. Interfaces 5, 1800571 (2018).

Article  Google Scholar 

Xiong, M., Gao, Y. & Liu, J. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J. Magn. Magn. Mater. 354, 279–283 (2014).

Article  CAS  Google Scholar 

Ma, B. et al. A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019).

Article  Google Scholar 

Xing, W. et al. Construction of 3D conductive network in liquid gallium with enhanced thermal and electrical performance. Adv. Mater. Technol. 7, 2100970 (2022).

Article  CAS  Google Scholar 

Daalkhaijav, U., Yirmibesoglu, O. D., Walker, S. & Mengüç, Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol. 3, 1700351 (2018).

Article 

留言 (0)

沒有登入
gif