Deep Learning-Based Detect-Then-Track Pipeline for Treatment Outcome Assessments in Immunotherapy-Treated Liver Cancer

ClinicalTrials.gov. CTG Labs - NCBI. ClinicalTrials.gov. https://clinicaltrials.gov/ [Accessed December 1, 2023].

Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent DJ, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer [Internet]. 2009;45(2):228–47. Available from: https://doi.org/10.1016/j.ejca.2008.10.026

Hadjiiski LM, Weizer AZ, Alva A, Caoili EM, Cohan RH, Cha K, et al. Treatment response assessment for bladder cancer on CT based on computerized volume analysis, World Health Organization Criteria, and RECIST. American Journal of Roentgenology [Internet]. 2015;205(2):348–52. Available from: https://doi.org/10.2214/ajr.14.13732

Lau DH, Seibert JA, Gandara DR, Laptalo L, Geraghty E, Coulon C. Computer-Assisted image analysis of bronchioloalveolar carcinoma. Clinical Lung Cancer [Internet]. 2005;6(5):281–6. Available from: https://doi.org/10.3816/clc.2005.n.006

Gonen KLCM, Ford R. Monitoring Reader Metrics in Blinded Independent Central Review of Oncology Studies. Journal of Clinical Trials [Internet]. 2015;05(04). Available from: https://doi.org/10.4172/2167-0870.1000230

Rr F, Sc M, Fraunberger J. Adjudication Rates between Readers in Blinded Independent Central Review of Oncology Studies. Journal of Clinical Trials [Internet]. 2016;06(05). Available from: https://doi.org/10.4172/2167-0870.1000289

Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, et al. Role of artificial intelligence in radiogenomics for cancers in the era of Precision Medicine. Cancers [Internet]. 2022;14(12):2860. Available from: https://doi.org/10.3390/cancers14122860

Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, et al. Application of Artificial Intelligence technology in Oncology: Towards the establishment of precision Medicine. Cancers [Internet]. 2020;12(12):3532. Available from: https://doi.org/10.3390/cancers12123532

Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discovery [Internet]. 2021;11(4):900–15. Available from: https://doi.org/10.1158/2159-8290.cd-21-0090

Jiang H, Diao Z, Shi T, Zhou Y, Wang F, Hu W, et al. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Computers in Biology and Medicine [Internet]. 2023;157:106726. Available from: https://doi.org/10.1016/j.compbiomed.2023.106726

Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence [Internet]. 2017;39(6):1137–49. Available from: https://doi.org/10.1109/tpami.2016.2577031

Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence [Internet]. 2020;42(2):318–27. Available from: https://doi.org/10.1109/tpami.2018.2858826

Nasrullah N, Sang J, Alam MS, Mateen M, Cai B, Hu H. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors [Internet]. 2019;19(17):3722. Available from: https://doi.org/10.3390/s19173722

Pehrson LM, Nielsen MB, Lauridsen CA. Automatic Pulmonary nodule Detection Applying deep learning or machine learning algorithms to the LIDC-IDRI Database: A Systematic review. Diagnostics [Internet]. 2019;9(1):29. Available from: https://doi.org/10.3390/diagnostics9010029

Sourlos N, Wang J, Nagaraj Y, Van Ooijen PMA, Vliegenthart R. Possible bias in supervised deep learning algorithms for CT lung nodule detection and classification. Cancers [Internet]. 2022;14(16):3867. Available from: https://doi.org/10.3390/cancers14163867

Tang Y, Yan K, Xiao J. One click lesion RECIST measurement and segmentation on CT scans. In: Lecture Notes in Computer Science [Internet]. 2020. p. 573–83. Available from: https://doi.org/10.1007/978-3-030-59719-1_56

Gul S, Khan MS, Bibi A, Khandakar A, Ayari MA, Chowdhury MEH. Deep learning techniques for liver and liver tumor segmentation: A review. Computers in Biology and Medicine [Internet]. 2022;147:105620. Available from: https://doi.org/10.1016/j.compbiomed.2022.105620

Survarachakan S, Prasad PJR, Naseem R, De Frutos JP, Kumar RP, Langø T, et al. Deep learning for image-based liver analysis — A comprehensive review focusing on malignant lesions. Artificial Intelligence in Medicine [Internet]. 2022;130:102331. Available from: https://doi.org/10.1016/j.artmed.2022.102331

Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q, et al. The Liver Tumor Segmentation Benchmark (LITS). Medical Image Analysis [Internet]. 2023;84:102680. Available from: https://doi.org/10.1016/j.media.2022.102680

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage [Internet]. 2006;31(3):1116–28. Available from: https://doi.org/10.1016/j.neuroimage.2006.01.015

Baumgärtner M, Jäger PF, Isensee F, Maier-Hein KH. NNDetection: a self-configuring method for medical object detection. In: Lecture Notes in Computer Science [Internet]. 2021. p. 530–9. Available from: https://doi.org/10.1007/978-3-030-87240-3_51

Jaeger PF, Kohl S a. A, Bickelhaupt S, Isensee F, Kuder TA, Schlemmer H, et al. Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection. arXiv (Cornell University) [Internet]. 2018; Available from: https://arxiv.org/pdf/1811.08661

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Networks for Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. 2017; Available from: https://doi.org/10.1109/cvpr.2017.106

Ronneberger O, Fischer P, Brox T. U-NET: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science [Internet]. 2015. p. 234–41. Available from: https://doi.org/10.1007/978-3-319-24574-4_28

Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. MONAI: An open-source framework for deep learning in healthcare [Internet]. arXiv.org. 2022. Available from: https://arxiv.org/abs/2211.02701

Sobek J, Inojosa JRM, Inojosa BJM, Rassoulinejad-Mousavi SM, Conte GM, Lopez-Jimenez F, et al. MedYOLO: a medical Image object Detection framework [Internet]. arXiv.org. 2023. Available from: https://arxiv.org/abs/2312.07729

Wittmann B, Navarro FA, Shit S, Menze B. Focused decoding enables 3D anatomical detection by transformers. The Journal of Machine Learning for Biomedical Imaging [Internet]. 2023;2(February 2023):72–95. Available from: https://melba-journal.org/2023:003

Heinrich MP, Jenkinson M, Brady M, Schnabel JA. MRF-Based Deformable Registration and Ventilation Estimation of lung CT. IEEE Transactions on Medical Imaging [Internet]. 2013;32(7):1239–48. Available from: https://doi.org/10.1109/tmi.2013.2246577

Avants B, Tustison NJ, Song G. Advanced Normalization Tools: v1.0. Insight Journal [Internet]. 2009; Available from: https://doi.org/10.54294/uvnhin

Dong X, Zhou Y, Wang L, Peng J, Lou Y, Fan Y. Liver cancer detection using hybridized fully convolutional neural network based on deep learning framework. IEEE Access [Internet]. 2020;8:129889–98. Available from: https://doi.org/10.1109/access.2020.3006362

Vorontsov E, Cerny M, Régnier P, Di Jorio L, Pal C, Lapointe R, et al. Deep Learning for Automated Segmentation of Liver Lesions at CT in Patients with Colorectal Cancer Liver Metastases. Radiology [Internet]. 2019;1(2):180014. Available from: https://doi.org/10.1148/ryai.2019180014

Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, et al. Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artificial Intelligence in Medicine [Internet]. 2017;83:58–66. Available from: https://doi.org/10.1016/j.artmed.2017.03.008

留言 (0)

沒有登入
gif