Unsupervised generative learning-based decision-making system for COVID-19 detection

World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. January 30 2022.

WHO Coronavirus (COVID-19) Dashboard. http://covid19.who.int/?gclid=CjwKCAjw8KmLBhB8EiwAQbqNoAQF669E29xtQxZeOrBjBOEg0WZ3X_2OgH4h32GnFPEmy8bqhY3nPBoCkfMQAvD_BwE. Accessed 27 Apr 2024.

WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed 27 Apr 2024.

Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. A deep learning algorithm using ct images to screen for corona virus disease (covid-19). Eur Radiol. 2021;1–9.

Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev Biomed Eng. 2020.

Pham TD. A comprehensive study on classification of covid-19 on computed tomography with pretrained convolutional neural networks. Sci Rep. 2020;10(1):1–8.

Article  MathSciNet  Google Scholar 

Wang L, Lin ZQ, Wong A. Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci Rep. 2020;10(1):1–12.

Google Scholar 

Duran-Lopez L, Dominguez-Morales JP, Corral-Jaime J, Vicente-Diaz S, Linares-Barranco A. Covid-xnet: a custom deep learning system to diagnose and locate covid-19 in chest x-ray images. Appl Sci. 2020;10(16):5683.

Article  Google Scholar 

Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly representative covid-19 biomarkers from x-ray images with deep learning approach and image data related to pulmonary diseases. J Med Biol Eng. 2020;40:462–9. https://doi.org/10.1007/s40846-020-00529-4.

Article  Google Scholar 

Farooq M, Hafeez A. Covid-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395. 2020.

Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. Covid-caps: a capsule network-based framework for identification of covid-19 cases from x-ray images. Pattern Recogn Lett. 2020;138:638–43.

Article  Google Scholar 

Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhang R-G, Cheng MM. Jcs: an explainable covid-19 diagnosis system by joint classification and segmentation. IEEE Trans Image Process. 2021.

Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2015;35(5):1170–81.

Article  Google Scholar 

Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.

Article  Google Scholar 

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. arXiv preprint arXiv:1406.2661. 2014.

Lin D, Fu K, Wang Y, Xu G, Sun X. Marta gans: unsupervised representation learning for remote sensing image classification. IEEE Geosci Remote Sens Lett. 2017;14(11):2092–6.

Article  Google Scholar 

Yadav P, Menon N, Ravi V, Vishvanathan S. Lung-gans: unsupervised representation learning for lung disease classification using chest ct and x-ray images. IEEE Trans Eng Manag. 2021. https://doi.org/10.1109/TEM.2021.3103334.

Article  Google Scholar 

Khan AI, Shah JL, Bhat MM. Coronet: a deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed. 2020;196:105581.

Article  Google Scholar 

Oh Y, Park S, Ye JC. Deep learning covid-19 features on cxr using limited training data sets. IEEE Trans Med Imaging. 2020;39(8):2688–700.

Article  Google Scholar 

Wang X, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Zheng C. A weakly-supervised framework for covid-19 classification and lesion localization from chest ct. IEEE Trans Med Imaging. 2020;39(8):2615–25.

Article  Google Scholar 

Xu Z, Cao Y, Jin C, Shao G, Liu X, Zhou J, Shi H, Feng J. Gasnet: weakly-supervised framework for covid-19 lesion segmentation. arXiv preprint arXiv:2010.09456. 2020.

Zhou J, Jing B, Wang Z. Soda: detecting covid-19 in chest x-rays with semisupervised open set domain adaptation. arXiv preprint arXiv:2005.11003. 2020.

Calderon-Ramirez S, Moemeni A, Elizondo D, Colreavy-Donnelly S, Chavarria-Estrada LF, Molina-Cabello MA, et al. Correcting data imbalance for semi-supervised covid-19 detection using x-ray chest images. arXiv preprint arXiv:2008.08496. 2020.

Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel C. Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249. 2019.

Alshazly H, Linse C, Abdalla M, Barth E, Martinetz T. Covid-nets: deep CNN architectures for detecting COVID-19 using chest CT scans. medRxiv. 2021.

Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal Appl. 2021. https://doi.org/10.1007/s10044-021-00984-y.

Article  Google Scholar 

Born J, Wiedemann N, Cossio M, Buhre C, Brändle G, Leidermann K, Goulet J, Aujayeb A, Moor M, Rieck B, et al. Accelerating detection of lung pathologies with explainable ultrasound image analysis. Appl Sci. 2021;11(2):672. https://doi.org/10.3390/app11020672.

Article  Google Scholar 

Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, Xu B. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Eur Rad. 2021;6096–104.

Kim CK, Choi JW, Jiao Z, Wang D, Wu J, Yi TY, Halsey KC, Eweje F, Tran TM, Liu C, Wang R. An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data. NPJ Digit Med. 2022;5(1):5.

Article  Google Scholar 

Gour M, Jain S. Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern Biomed Eng. 2022;42(1):27–41. https://doi.org/10.1016/j.bbe.2021.12.001.

Article  Google Scholar 

Bermejo-Peláez D, San José Estépar R, Fernández-Velilla M, Palacios Miras C, Gallardo Madueño G, Benegas M, Gotera Rivera C, Cuerpo S, Luengo-Oroz M, Sellarés J, Sánchez M. Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT. Sci Rep. 2022;12(1):9387. https://doi.org/10.1038/s41598-022-13298-8.

Article  Google Scholar 

Hardy-Werbin M, Maiques JM, Busto M, Cirera I, Aguirre A, Garcia-Gisbert N, Zuccarino F, Carbullanca S, Del Carpio LA, Ramal D, Gayete Á. MultiCOVID: a multi modal deep learning approach for COVID-19 diagnosis. Sci Rep. 2023;13(1):18761. https://doi.org/10.1038/s41598-023-46126-8.

Article  Google Scholar 

Di Napoli A, Tagliente E, Pasquini L, Cipriano E, Pietrantonio F, Ortis P, Curti S, Boellis A, Stefanini T, Bernardini A, Angeletti C. 3D CT-inclusive deep-learning model to predict mortality, ICU admittance, and intubation in COVID-19 patients. J Digit Imaging. 2023;36(2):603–16. https://doi.org/10.1007/s10278-022-00734-4.

Article  Google Scholar 

Oi Y, Ogawa F, Yamashiro T, Matsushita S, Oguri A, Utada S, Misawa N, Honzawa H, Abe T, Takeuchi I. Prediction of prognosis in patients with severe COVID-19 pneumonia using CT score by emergency physicians: a single-center retrospective study. Sci Rep. 2023;13(1):4045.

Article  Google Scholar 

Xie P, Zhao X, He X. Improve the performance of CT-based pneumonia classification via source data reweighting. Sci Rep. 2023;13(1):9401.

Article  Google Scholar 

Miyazaki A, Ikejima K, Nishio M, Yabuta M, Matsuo H, Onoue K, Matsunaga T, Nishioka E, Kono A, Yamada D, Oba K. Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system. Sci Rep. 2023;13(1):17533.

Article  Google Scholar 

Abad M, Casas-Roma J, Prados F. Generalizable disease detection using model ensemble on chest X-ray images. Sci Rep. 2024;14(1):5890.

Article  Google Scholar 

Sadeghi A, Sadeghi M, Sharifpour A, Fakhar M, Zakariaei Z, Sadeghi M, Rokni M, Zakariaei A, Banimostafavi ES, Hajati F. Potential diagnostic application of a novel deep learning-based approach for COVID-19. Sci Rep. 2024;14(1):280.

Article  Google Scholar 

King, B., Barve, S., Ford, A., Jha, R.: Unsupervised clustering of covid-19 chest x-ray images with a self-organizing feature map. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE. 2020. p. 395–98.

Mansour RF, Escorcia-Gutierrez J, Gamarra M, Gupta D, Castillo O, Kumar S. Unsupervised deep learning based variational autoencoder model for covid-19 diagnosis and classification. Pattern Recogn Lett. 2021;151:267–74. https://doi.org/10.1016/j.patrec.2021.08.018.

Article  Google Scholar 

Rashid N, Hossain MAF, Ali M, Islam Sukanya M, Mahmud T, Fattah SA. Autocovnet: unsupervised feature learning using autoencoder and feature merging for detection of covid-19 from chest x-ray images. Biocybern Biomed Eng. 2021;41(4):1685–701. https://doi.org/10.1016/j.bbe.2021.09.004.

Article  Google Scholar 

Alizadehsani R, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Gorriz JM, Hussain S, Arco JE, Sani ZA, Khozeimeh F, et al. Uncertainty-aware semi-supervised method using large unlabelled and limited labeled covid-19 data. arXiv preprint arXiv:2102.06388. 2021.

Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. Ieee Access. 2020;8:91916–23.

Article  Google Scholar 

Loey M, Smarandache FM, Khalifa NE. Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning. Symmetry. 2020;12(4).

Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts. Distill. 2016;1(10):3.

Article  Google Scholar 

El-Shafai W. Extensive COVID-19 X-Ray and CT chest images dataset. Mendeley. 2020. https://doi.org/10.17632/8H65YWD2JR.3. https://data.mendeley.com/datasets/8h65ywd2jr/3.

Guo X, Liu X, Zhu E, Yin J. Deep clustering with convolutional autoencoders. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES, editors. Neural information processing. ICONIP 2017. Lecture Notes in Computer Science, vol. 10635. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-70096-0_39.

Chapter  Google Scholar 

Guo X, Gao L, Liu X, Yin J. Improved deep embedded clustering with local structure preservation. In: IJCAI. 2017. p. 1753–59.

Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9(11).

留言 (0)

沒有登入
gif