Improvement of economic and useful characters of wheat using RNA interference technology

Keywords: wheat; RNA interference; transgenic plants; grain quality; resistance to stresses

Abstract Wheat is a strategic cereal crop of global importance and plays a leading role in the food supply of mankind. Despite the general trend to increase in its production, climatic changes leading to significant temperature changes, unpredictable precipitation or droughts and the appearance of new races of pathogens and pests significantly affect its yield. In order to prevent the negative impact of changes in climatic conditions on the productivity of this crop, it is necessary to develop innovative technologies for improving the resistance of wheat to environmental stresses. RNA interference (RNAi) represents a new potential tool for wheat breeding by introducing small non-coding RNA sequences with the ability to silence gene expression in a sequence-specific manner. A decrease in the expression of a certain gene determines the acquisition of a new characteristic through the elimination or accumulation of certain plant traits, which leads to biochemical or phenotypic changes that the original plants do not have. This literature review describes the progress achieved over the past decades in the application of RNAi to create wheat plants with improved economic and valuable traits. The main stages of the gene silencing mechanism mediated by short interfering RNA (siRNA) and microRNA (miRNA), features of their biogenesis, modes of action and distribution are presented. Examples of the use of various biotechnological approaches to wheat improvement using gene transformation, endogenous and exogenous double-stranded RNA molecules (dsRNA) are given. The possibility of using RNAi technology to increase the nutritional value and quality of grain, remove toxic compounds and allergens is highlighted. Considerable attention is paid to the practical results of various applications of RNAi to increase the resistance of wheat to biotic stress factors, in particular, viruses, bacteria, fungi, insect pests, and nematodes. Examples of the use of siRNA-mediated RNAi and the role of miRNA in improving wheat tolerance to abiotic stresses are summarized.

References

Abdellatef, E., Kamal, N. M., & Tsujimoto, H. (2021). Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses. International Journal of Molecular Sciences, 22(14), 7687.
Akbar, S., Wei, Y., & Zhang, M.-Q. (2022). RNA interference: Promising approach to combat plant viruses. International Journal of Molecular Sciences, 23(10), 5312.
Akdogan, G., Tufekci, E. D., Uranbey, S., & Unver, T. (2016). miRNA-based drought regulation in wheat. Functional and Integrative Genomics, 16(3), 221–233.
Ali, N., Datta, N., & Datta, K. (2010). RNA interference in designing transgenic crops. GM Crops, 1(4), 207–213.
Alptekin, B., Langridge, P., & Budak, H. (2017). Abiotic stress miRNomes in the Triticeae. Functional Integrative Genomics, 17, 145–170.
Altenbach, S. B., Tanaka, C. K., & Allen, P. V. (2014а). Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. Journal of Cereal Sciense, 59(2), 118–125.
Altenbach, S. B., Tanaka, C. K., & Seabourn, B. W. (2014b). Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biology, 14, 393.
Bai, Q., Wang, X., Chen, X., Shi, G., Liu, Z., Guo, C., & Xiao, K. (2018). Wheat miRNA Taemir408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes. Frontiers in Plant Science, 18(9), 499.
Bai, X., Huang, X., Tian, S., Peng, H., Zhan, G., Goher, F., Guo, J., Kang, Z., & Guo, J. (2021). RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 22(4), 410–421.
Banerjee, P. (2020). Plant abiotic stress responses and microRNAs. In: Maitra, S., & Pramanick, B. (Eds.). Advanced agriculture. New Delhi Publishers, New Delhi. Pp. 109–118.
Barro, F., Iehisa, J. C., Giménez, M. J., García-Molina, M. D., Ozuna, C. V., Comino, I., Sousa, C., & Gil-Humanes, J. (2016). Targeting of prolamins by RNAi in bread wheat: Effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnology Journal, 14(3), 986–996.
Baulcombe, D. (2019). How virus resistance provided a mechanistic foundation for RNA silencing. The Plant Cell, 31, 1395–1396.
Baum, J. A., & Roberts, J. K. (2014). Progress towards RNAi-mediated insect pest management. Advances in Insect Physiology, 47, 250–295.
Bharathi, J., Anandan, R., Benjamin, L., Muneer, S., & Prakash, M. (2023). Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. Plant Physiology and Biochemistry Journal, 194, 600–618.
Bhogireddy, S., Mangrauthia, S., Kumar, R., Pandey, A., Singh, S., Jain, A., Budak, H., Varshney, R., & Kudapa, H. (2021). Regulatory non coding RNAs: A new frontier in regulation of plant biology. Functional and Integrative Genomics, 21, 313–330.
Bilir, Ö., Göl, D., Hong, Y., McDowell, J. M., & Tör, M. (2022). Small RNA-based plant protection against diseases. Frontiers in Plant Science, 13, 951097.
Blyuss, K. B., Fatehi, F., Tsygankova, V. A., Biliavska, L. O., Iutynska, G. O., Yemets, A. I., & Blume, Y. B. (2019). RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Frontiers in Plant Science, 10, 483.
Brosnan, C. A., & Voinnet, O. (2009). The long and the short of noncoding RNAs. Current Opinion in Cell Biology, 21(3), 416–425.
Budak, H., & Akpinar, B. A. (2015). Plant miRNAs: Biogenesis, organization and origins. Functional Integrative Genomics, 15(5), 523–531.
Budak, H., Hussain, B., Khan, Z., Ozturk, N. Z., & Ullah, N. (2015a). From genetics to functional genomics: Improvement in drought signaling and tolerance in wheat. Frontiers in Plant Science, 6, 1012.
Budak, H., Kantar, M., Bulut, R., & Akpinar, B. A. (2015b). Stress responsive miRNAs and isomiRs in cereals. Plant Science, 235, 1–13.
Canto-Pastor, A., Santos, B. A., Valli, A. A., Summers, W., Schornack, S., & Baulcombe, D. C. (2019). Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proceedings of the National Academy of Sciences of the United States of America, 116(7), 2755–2760.
Chen, C. L., Liu, S. S., Liu, Q., Niu, J. H., Liu, P., Zhao, J. L., & Jian, H. (2015). An annexin-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense. PLoS One, 10(4), e0122256.
Chen, W., Kastner, C., Nowara, D., Oliveira-Garcia, E., Rutten, T., Zhao, Y., Deising, H., Kumlehn, J., & Schweizer, P. (2016). Host-induced silencing of Fusarium culmorum genes protects wheat from infection. Journal of Experimental Botany, 67(17), 4979–4991.
Cheng, W., Song, X. S., Li, H. P., Cao, L. H., Sun, K., Qiu, X. L., Xu, Y. B., Yang, P., Huang, T., Zhang, J. B., Qu, B., & Liao, Y. C. (2015). Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal, 13(9), 1335–1345.
Cruz, L. F., Rupp, J. L. S., Trick, H. N., & Fellers, J. P. (2014). Stable resistance to Wheat streak mosaic virus in wheat mediated by RNAi. In Vitro Cellular and Developmental Biology-Plant, 50(6), 665–672.
D’Ario, M., Griffiths-Jones, S., & Kim, M. (2017). Small RNAs: Big impact on plant development. Trends in Plant Science, 22(12), 1056–1068.
Dalakouras, A., Wassenegger, M., Dadami, E., Ganopoulos, I., Pappas, M., & Papadopouloua, K. (2020). Genetically modified organism-free RNA interference: Exogenous application of RNA molecules in plants. Plant Physiology, 182(1), 38–50.
Deng, P., Muhammad, S., Cao, M., & Wu, L. (2018). Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnology Journal, 16(5), 965–975.
Deng, X., Hu, W., Wei, S., Zhou, S., Zhang, F., Han, J., Chen, L., Li, Y., Feng, J., Fang, B., Luo, Q., Li, S., Liu, Y., Yang, G., & He, G. (2013). TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One, 8(7), e69881.
Dubrovna, O. V., Priadkina, G. O., Mykhalska, S. I., & Komisarenko, A. G. (2022). Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene. Regulatory Mechanism sin Biosystems, 13(4), 385–392.
Dubrovna, O. V., Stasik, O. O., Priadkina, G. O., Zborivska, O. V., & Sokolovska-Sergienko, O. G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural Science and Practice, 7(2), 24–34.
Dutta, S., Kumar, D., Jha, S., Prabhu, K. V., Kumar, M., & Mukhopadhyay, K. (2017). Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.). Planta, 246(5), 939–957.
Dutta, T. K., Banakar, P., & Rao, U. (2015). The status of RNAi-based transgenic research in plant nematology. Frontiers in Microbiology, 5, 760.
Dutta, T. K., Papolu, P. R., Singh, D., Sreevathsa, R., & Rao, U. (2020). Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum. Plant Science, 301, e110670.
Eren, H., Pekmezci, M. Y., Okay, S., Turktas, M., Inal, B., Ilhan, E., Atak, M., Erayman, M., & Unver, T. (2015). Hexaploid wheat (Triticum aestivum) root miRNome analysis in response to salt stress. Annals of Applied Biology, 167(2), 208–216.
Fahim, M., Ayala-Navarrete, L., Milla, A. A., & Larkin, P. J. (2010). Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnology Journal, 8, 821–834.
Fahim, M., Millar, A. A., Wood, C. C., & Larkin, P. J. (2012). Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150–163.
Feng, H., Duan, X., Zhang, Q., Li, X., Wang, B., Huang, L., Wang, X., & Kang, Z. (2014). The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 15(3), 284–296.
Feng, H., Wang, B., Zhang, Q., Fu, Y., Huang, L., Wang, X., & Kang, Z. (2015). Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust. Frontiers in Plant Science, 6, 469.
Feng, H., Zhang, Q., Wang, Q., Wang, X., Liu, J., & Li, M. (2013). Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Molecular Biology, 83(4–5), 433–443.
Ferdous, J., Hussain, S. S., & Shi, B. J. (2015). Role of microRNAs in plant drought tolerance. Plant Biotechnology Journal, 13, 293–305.
Figueroa, M., Hammond-Kosack, K., & Solomon, P. (2018). A review of wheat diseases – a field perspective. Molecular Plant Pathology, 19(6), 1523–1536.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.
Fletcher, S. J., Reeves, P. T., Hoang, B. T., & Mitter, N. A. (2020). Perspective on RNAi-based biopesticides. Frontiers in Plant Science, 11, e00051.
Gantasala, N. P., Kumar, M., Banakar, P., Thakur, P. K., & Rao, U. (2015). Functional validation of genes in cereal cyst nematode, Heterodera avenae, using siRNA gene silencing. In: Dababat, A. A., Muminjanov, H., & Smiley, R. (Eds.). Nematodes of small grain cereals: Current status and research. FAO, Ankara. Pp. 353–356.
Gasparis, S., Kała, M., Przyborowski, M., Orczyk, W., & Nadolska-Orczyk, A. (2017). Artificial microRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Frontiers in Plant Science, 9(7), 02017.
Gasparis, S., Orczyk, W., Zalewski, W., & Nadolska-Orczyk, A. (2011). The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. Jornal of Experimental Botany, 62(11), 4025–4036.
Ghag, S. B. (2017). Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiological and Molecular Plant Pathology, 100, 242–254.
Gil-Humanes, J., Piston, F., Gimenez, M. J., Martın, A., & Barro, F. (2012). The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS One, 7(9), e45937.
Gil-Humanes, J., Piston, F., Hernando, A., Alvarez, J. B., Shewry, P. R., & Barro, F. (2008). Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. Jornal of Cereal Science, 48, 565–568.
Gil-Humanes, J., Pistón, F., Tollefsen, S., Sollid, L. M., & Barro, F. (2010). Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 17023–17028.
Godwin, I. D., Williams, S. B., Pandit, P. S., & Laidlaw, H. K. (2009). Multifunctional grains for the future: Genetic engineering for enhanced and novel cereal quality. In Vitro Cellular and Developmental Biology – Plant, 45(4), 383–399.
Goswami, S., Kumar, R. R., & Rai, R. D. (2014). Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress. Australian Journal of Crop Science, 8(5), 697–705.
Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453–460.
Gupta, O. P., Meena, N., Sharma, I., & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 7, 4623–4629.
Gupta, O. P., Permar, V., Koundal, V., Singh, U. D., & Praveen, S. (2012). MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Molecular Biology Reports, 39, 817–822.
Halder, K., Chaudhuri, A., Abdin, M. Z., & Datta, A. (2023). Tweaking the small non-coding RNAs to improve desirable traits in plant. International Journal of Molecular Sciences, 24(4), 3143.
Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286(5441), 950–952.
Hernández-Soto, A., & Chacón-Cerdas, R. (2021). RNAi crop protection advances. International Journal of Molecular Sciences, 22(22), 12148.
Hua, Y., Zhang, C., Shi, W., & Chen, H. (2019). High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.). Biotechnology and Biotechnological Equipment, 33, 465–471.
Islam, W., Waheed, A., Naveed, H., & Zeng, F. (2022). MicroRNAs mediated plant responses to salt stress. Cells, 11(18), 2806.
Jiao, J., & Peng, D. (2018). Wheat MicroRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101. Journal of Plant Interactions, 13, 514–521.
Joga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Frontiers in Physiology, 7, 553.
Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Small RNAs in plants: Recent development and application for crop improvement. Frontiers in Plant Sciense, 6, 208.
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 5692.
Kaur, R., Choudhury, A., Chauhan, S., Ghosh, A., Tiwari, R., & Rajam, M. (2021). RNA interference and crop protection against biotic stresses. Physiology and Molecular Biology of Plants, 27(10), 2357–2377.
Kazan, K. (2017). The multitalented mediator25. Frontiers in Plant Science, 8, 999.
Koch, A., & Kogel, K. H. (2014). New wind in the sails: improving the agronomic value of crop plant sthrough RNAi-mediated gene silencing. Plant Biotechnology Journal, 12(7), 821–831.
Kong, X., Yang, M., Le, B. H., He, W., & Hou, Y. (2022). The master role of SiRNAs in plant immunity. Molecular Plant Pathology, 23(10), 1565–1574.
Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta, 251(4), 91.
Kumar, R. R., Pathak, H., Sharma, S. K., Kala, Y. K., Nirjal, M. K., Singh, G. P., Goswami, S., & Rai, R. D. (2015). Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional and Integrative Genomics, 15(3), 323–348.
Lacombe, S., Bangratz, M., Ta, H., Nguyen, T., Gantet, P., & Brugidou, C. (2021). Optimized RNA-silencing strategies for Rice Ragged Stunt Virus resistance in rice. Plants, 10(10), 2008.
Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.
Li, C., & Zhang, B. (2016). MicroRNAs in control of plant development. Journal Cellula Physiology, 231(2), 303–313.
Li, Z., Liu, Y., & Berger, P. H. (2005). Transgenic silencing in wheat transformed with the WSMV-CP gene. Biotechnology, 4(1), 62–68.
Lilley, C. J., Bakhetia, M., Charlton, W. L., & Urwin, P. E. (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 8, 701–711.
Liu, P., Zhang, X., Zhang, F., Xu, M., Ye, Z., Wang, K., Liu, S., Han, X., Cheng, Y., Zhong, K., Zhang, T., Li, L., Ma, Y., Chen, M., Chen, J., & Yang, J. (2021). A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 14(7), 1088–1103.
Liu, Q., Yang, T., Yu, T., Zhang, S., Mao, X., Zhao, J., Wang, X., Dong, J., & Liu, B. (2017). Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Frontiers in Plant Science, 8, 43.
Liu, S., Geng, S., Li, A., Mao, Y., & Mao, L. (2021). RNAi technology for plant protection and its application in wheat. aBIOTECH, 2, 365–374.
Lu, W., Li, J., Liu, F., Gu, J., Guo, C., Xu, L., Zhang, H., & Xiao, K. (2011). Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Frontiers of Agriculture in China, 5, 413–422.
Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S., Guo, X., Cao, L., & Lin, T. (2015). Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biology, 15, 21.
Machado, A. K., Brown, N. A., Urban, M., Kanyuka, K., & Hammond-Kosack, K. E. (2018). RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Management Science, 74(4), 790–799.
Mezzetti, B., Smagghe, G., Arpaia, S., & Christiaens, O. (2020). RNAi: What is its position in agriculture? Journal of Pest Science, 93(4), 1125–1130.
Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Shinozaki, K. Y. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2), 97–103.
Nemati, F., Ghanati, F., Ahmadi Gavlighi, H., & Sharifi, M. (2018). Comparison of sucrose metabolism in wheat seedlings during drought stress and subsequent recovery. Biologia Plantarum, 62, 595–599.
Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., & Schweizer, P. (2010). HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130–3141.
Nowsherwan, I., Shabbir, G., Malik, S. I., & Ilyas, M. (2018). Effect of drought stress on different physiological traits in bread wheat. Journal of Agriculture, 16(1), 1.
Pandey, R., Joshi, G., Bhardwaj, A. R., Agarwal, M., & Katiyar-Agarwal, S. A. (2014). Comprehensive genome-wide study on tissue specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One, 9(4), e95800.
Panwar, V., Jordan, M., McCallum, B., & Bakkeren, G. (2018). Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnology Journal, 16, 1013–1023.
Panwar, V., McCallum, B., & Bakkeren, G. (2013a). Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 81, 595–608.
Panwar, V., McCallum, B., & Bakkeren, G. (2013b). Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant Journal, 73(3), 521–532.
Pistón, F., Gil-Humanes, J., Rodríguez-Quijano, M., & Barro, F. (2011). Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength. PLoS One, 6(9), e24754.
Qi, T., Guo, J., Liu, P., He, F., Wan, C., Islam, M., Tyler, B. M., Kang, Z., & Guo, J. (2019a). Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat. Molecular Plant, 12(12), 1624–1638.
Qi, T., Guo, J., Peng, H., Liu, P., Kang, Z., & Guo, J. (2019b). Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences, 20(1), 206.
Qi, T., Zhu, X., Tan, C., Liu, P., Guo, J., Kang, Z., & Guo, J. (2018). Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnology Journal, 16, 797–807.
Ragupathy, R., Ravichandran, S., Mahdi, M. S. R., Huang, D., Reimer, E., Domaratzki, M., & Cloutier, S. (2016). Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Scientific Reports, 6, 39373.
Rajam, M. V. (2020). RNA silencing technology: A boon for crop improvement. Journal of Biosciences, 45(1), 1–5.
Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M., & Cloutier, S. (2019). MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics, 20(1), 488.
Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S., & Morell, M. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences USA, 103(10), 3546–3551.
Riechen, J. (2007). Establishment of broad-spectrum resistance against Blumeria graminis f.sp. tritici in Triticum aestivum by RNAi-mediated knock-down of MLO. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2(suppl.), 120.
Rodrigues, T. B., & Petrick, J. S. (2020). Safety considerations for humans and other vertebrates regarding agricultural uses of externally applied RNA molecules. Frontiers in Plant Science, 11, 407.
Sang, H., & Kim, J. (2020). Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports, 14, 1.
Schaefer, K. L., Parlange, F., Buchmann, G., Jung, E., Wehrli, A., Herren, G., Müller, M. C., Stehlin, J., Schmid, R., Wicker, T., Keller, B., & Bourras, S. (2020). Cross-kingdom RNAi of pathogen effectors leads to quantitative adult plant resistace in wheat. Frontiers in Plant Sciences, 11, 253.
Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537–1553.
Shiferaw, B., Smale, M., Braun, H., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291–317.
Shoup Rupp, J. L., Cruz, L. F., Trick, H. N., & Fellers, J. P. (2016). RNAi-mediated, stable resistance to Triticum mosaic virus in wheat. Crop Science, 56(4), 1602–1610.
Singh, K., Dardick, C., & Kindu, J. K. (2019). RNAi-mediated resistance against viruses in perinnial fruit plants. Plants, 8(10), 359.
Sivamani, E., Brey, C. W., Talbert, L. E., Young, M. A., Dyer, W. E., Kaniewski, W. K., & Qu, R. (2002). Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Research, 11(1), 31–41.
Sivamani, E., Brey, C., Dyer, W. E., Talbert, L. E., & Qu, R. (2000). Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Molecular Breeding, 6(5), 469–477.
Skopelitis, D. S., Hill, K., Klesen, S., Marco, C. F., von Born, P., Chitwood, D. H., & Timmermans, C. P. M. (2018). Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nature Communications, 9(1), 3107.
Song, J. B., Gao, S., Wang, Y., Li, B. W., Zhang, Y. L., & Yang, Z. M. (2016). miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene, 5, 56–64.
Song, X., Li, Y., Cao, X., & Qi, Y. (2019). MicroRNAs and their regulatory roles in plant-environment interactions. Annual Review of Plant Biology, 70, 489–525.
Sun, L., Wen, J., Peng, H., Yao, Y., Hu, Z., Ni, Z., Sun, Q., & Xin, M. (2022). The genetic and molecular basis for improving heat stress tolerance in wheat. aBIOTECH, 3, 25–39.
Sun, Q., Liu, X., Yang, J., Liu, W., Du, Q., Wang, H., Fu, C., & Li, W-X. (2018). MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 11(6), 806–814.
Sun, Y., Sparks, C., Jones, H., Riley, M., Francis, F., Du, W., & Xia, L. (2019). Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants. Plant Biotechnology Journal, 17(5), 852–854.
Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196–203.
Tan, J-A. C. H., Jones, M. G. K., & Fosu-Nyarko, J. (2013). Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Experimental Parasitology, 133(2), 166–178.
Tang, Z., Zhang, L., Xu, C., Yuan, S., Zhang, F., Zheng, Y., & Zhao, C. (2012). Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic malesterile line by deep sequencing. Plant Physiology, 159(2), 721–738.
Tiwari, M., Sharma, D., & Trivedi, P. K. (2014). Artificial microRNA mediated gene silencing in plants: Progress and perspectives. Plant Molecular Biology, 86(1–2), 1–18.
Varallyay, E., Giczey, G., & Burgyan, J. (2012). Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Archives of Virology, 157, 1345–1350.
Wang, B., Fei Sun, Y., Son, N., Wei, J., Wang, X., Feng, H., Yin, Z., & Kang, Z. (2014). MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry, 80, 90–96.
Wang, B., Sun, Y., Song, N., Zhao, M., Liu, R., Feng, H., Wang, X., & Kang, Z. (2017). Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytologist, 215(1), 338–350.
Wang, M., Wu, L., Mei, Y., Zhao, Y., Ma, Z., Zhang, X., & Chen, Y. (2020). Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnology Journal, 18(12), 2373–2375.
Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., & Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One, 7(11), e48445.
Wen, S., Wen, N., Pang, J., Langen, G., Brew-Appiah, R. A., Mejias, J. H., Osorio, C., Yang, M., Gemini, R., Moehs, C. P., Zemetra, R. S., Kogel, K. H., Liu, B., Wang, X., von Wettstein, D., & Rustgi, S. (2012). Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20543–20548.
Wieser, H., Koehler, P., Folck, A., & Becker, D. (2006). Characterization of wheat with strongly reduced -gliadin content. In: Lookhart, G. L., Ng, P. K. W. (eds.). Proceedings of the 9th Annual Gluten Workshop. San Fransisco, Cali-fornia, United States of America. American Association of Cereal Chemists, St. Paul, Minnesota. Pp. 13–16.
Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., & Sun, Q. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 10, 123.
Xu, L., Duan, X., Lv, Y., Zhang, X., Nie, Z., Xie, C., Ni, Z., & Liang, R. (2014). Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Research, 23(2), 389–396.
Xu, L., Hou, Q., Zhao, Y., Lu, L., Lim, B., Ni, Z., & Liang, R. (2017). Silencing of a lipase maturation factor 2-like gene by wheat-mediated RNAi reduces the survivability and reproductive capacity of the grain aphid Sitobion avenae. Archives of Insect Biochemistry and Physiology, 95, e21392.
Yan, T., Chen, H., Sun, Y., Yu, X., & Xia, L. (2016). RNA interference of the ecdysone receptor genes EcR and USP in grain aphid (Sitobion avenae F.) affects its survival and fecundity upon feeding on wheat plants. International Journal of Molecular Sciences, 17(12), 2098.
Yang, K., Rong, W., Qi, L., Li, J., Wei, X., & Zhang, Z. (2013). Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Scientific Reports, 3, 3021.
Yang, S., Dai, Y., Chen, Y., Yang, J., Yang, D., Liu, Q., & Jian, H. (2019). A novel G16B09-like effector from Heterodera avenae suppresses plant defenses and promotes parasitism. Frontiers in Plant Science, 10, 66.
Younis, A., Siddiqu, M. I., Kim, C.-K., & Lim, K.-B. (2014). RNA interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding. International Journal of Biological Sciences, 10(10), 1150–1158.
Yu, H., Wang, Y., Fu, F., & Li, W. (2022). Transgenic improvement for biotic resistance of crops. International Journal of Biological Sciences, 23(22), 14370.
Yu, R., Xu, X., Liang, Y., Tian, H., Pan, Z., Jinm, S., Wang, N., & Zhang, W. (2014). The insect ecdysone receptor is a good potential target for RNAi based pest control. International Journal of Biological Sciences, 10(10), 1171–1180.
Yu, X. D., Liu, Z. C., Huang, S. L., Chen, Z. Q., Sun, Y. W., Duan, P. F., Ma, Y. Z., & Xia, L. Q. (2016). RNAi-mediated plant protection against aphids. Pest Management Science, 72(6), 1090–1098.
Yu, Y., Zhang, Y., Chen, X., & Chen, Y. (2019). Plant noncoding RNAs: Hidden players in development and stress responses. Annual Review of Cell and Developmental Biology, 35, 407–431.
Yu, Z., Wang, X., Mu, X., & Zhang, L. (2019). RNAi mediated silencing of dehydrin gene WZY2 confers osmotic stress intolerance in transgenic wheat. Functional Plant Biology, 46(10), 877–884.
Zeeshan, M., Qiu, C. W., Naz, S., Cao, F., & Wu, F. (2021). Genome-wide discovery of mirnas with differential expression patterns in responses to salinity in the two contrasting wheat cultivars. International Journal of Molecular Sciences, 22(22), 12556.
Zhang, B., & Wang, Q. (2016). MicroRNA, a new target for engineering new crop cultivars. Bioengineered, 7(1), 7–10.
Zhang, J., Khan, S. A., Heckel, D. G., & Bock, R. (2017). Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnology, 35, 871–882.
Zhang, Y., Zhou, J., Wei, F., Song, T., Yu, Y., Yu, M., Fan, Q., Yang, Y., Xue, G., & Zhang, X. (2021). Nucleoredoxin gene TaNRX1 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Frontiers in Plant Science, 12, 756338.
Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., & Jin, Y. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology, 10, 29.
Zhao, Y., Sui, X., Xu, L., Liu, G., Lu, L., You, M., Xie, C., Li, B., Ni, Z., & Liang, R. (2018). Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Management Science, 74(12), 2754–2760.
Zhu, X., Qi, T., Yang, Q., He, F., Tan, C., Ma, W., Voegele, R. T., Kang, Z., & Guo, J. (2017). Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiology, 175(4), 1853–1863.
Zuo, Z.-F., He, W., Li, J., Mo, B., & Liu, L. (2021). Small RNAs: The essential regulators in plant thermotolerance. Frontiers in Plant Science, 12, 726762.

留言 (0)

沒有登入
gif