Research advances in the anti-inflammatory effects of SGLT inhibitors in type 2 diabetes mellitus

Prattichizzo F, De Nigris V, Spiga R, et al. Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev. 2018;41:1–17.

Article  CAS  PubMed  Google Scholar 

Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.

Article  CAS  PubMed  Google Scholar 

Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes and related disorders. Immunity. 2022;55(1):31–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease[J]. N Engl J Med. 2017;377(12):1119–31.

Article  CAS  PubMed  Google Scholar 

Kramer CK, Zinman B. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors and the treatment of type 2 diabetes. Annu Rev Med. 2019;70:323–34.

Article  CAS  PubMed  Google Scholar 

Fonseca VA. New developments in diabetes management: medications of the 21st century. Clin Ther. 2014;36(4):477–84.

Article  CAS  PubMed  Google Scholar 

Elnaem MH, Mansour NO, Nahas AF, et al. Renal outcomes associated with the use of non-insulin antidiabetic pharmacotherapy: a review of current evidence and recommendations. Int J General Med. 2020;13:1395–409.

Article  Google Scholar 

Iannantuoni F, de Marañon AM, Diaz-Morales N, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019;8(11):1814.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scisciola L, Cataldo V, Taktaz F, et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. Front Cardiovasc Med. 2022;9:1008922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheepers A, Joost H-G, Schürmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr. 2004;28(5):364–71.

Article  CAS  Google Scholar 

Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94.

Article  CAS  PubMed  Google Scholar 

Ci C. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules. 2016;21(9):1136.

Article  Google Scholar 

Sokolov V, Yakovleva T, Chu L, et al. Differentiating the sodium-glucose cotransporter 1 inhibition capacity of canagliflozin vs. dapagliflozin and empagliflozin using quantitative systems pharmacology modeling. CPT Pharmacometr Syst Pharmacol. 2020;9(4):222–9.

Article  CAS  Google Scholar 

Dasari D, Goyal SG, Penmetsa A, et al. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol. 2023;949: 175720.

Article  CAS  PubMed  Google Scholar 

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

Article  CAS  PubMed  Google Scholar 

Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

Article  CAS  PubMed  Google Scholar 

Li C-X, Liang S, Gao L, et al. Cardiovascular outcomes associated with SGLT-2 inhibitors versus other glucose-lowering drugs in patients with type 2 diabetes: a real-world systematic review and meta-analysis. PLoS ONE. 2021;16(2): e0244689.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.

Article  CAS  PubMed  Google Scholar 

McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

Article  CAS  PubMed  Google Scholar 

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

Article  CAS  PubMed  Google Scholar 

Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–28.

Article  CAS  PubMed  Google Scholar 

Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39.

Article  CAS  PubMed  Google Scholar 

Zhang X-L, Zhu Q-Q, Chen Y-H, et al. Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc. 2018;7(2): e007165.

Article  PubMed  PubMed Central  Google Scholar 

Marx N, Federici M, Schütt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44(39):4043–140.

Article  CAS  PubMed  Google Scholar 

Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

Article  CAS  PubMed  Google Scholar 

Giugliano D, Longo M, Scappaticcio L, et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. Cardiovasc Diabetol. 2021;20(1):236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

Article  CAS  PubMed  Google Scholar 

Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.

Article  CAS  PubMed  Google Scholar 

Nakatsu Y, Kokubo H, Bumdelger B, et al. The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice. Int J Mol Sci. 2017;18(8):1704.

Article  PubMed  PubMed Central  Google Scholar 

Dimitriadis GK, Nasiri-Ansari N, Agrogiannis G, et al. Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice. Mol Cell Endocrinol. 2019;494: 110487.

Article  CAS  PubMed  Google Scholar 

Leng W, Ouyang X, Lei X, et al. The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE-/- Mice. Mediat Inflamm. 2016;2016:6305735.

Article  Google Scholar 

Lee DM, Battson ML, Jarrell DK, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu C, Wang W, Zhong J, et al. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem Pharmacol. 2018;152:45–59.

Article  CAS  PubMed  Google Scholar 

Niu Y, Zhang Y, Zhang W, et al. Canagliflozin ameliorates NLRP3 inflammasome-mediated inflammation through inhibiting NF-κB signaling and upregulating Bif-1. Front Pharmacol. 2022;13: 820541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali BH, Al Salam S, Al Suleimani Y, et al. Effects of the SGLT-2 inhibitor canagliflozin on adenine-induced chronic kidney disease in rats. Cell Physiol Biochem. 2019;52(1):27–39.

Article  CAS  PubMed  Google Scholar 

Xu Z, Hu W, Wang B, et al. Canagliflozin ameliorates nonalcoholic fatty liver disease by regulating lipid metabolism and inhibiting inflammation through induction of autophagy. Yonsei Medical J. 2022;63(7):619–31.

Article  CAS  Google Scholar 

Naznin F, Sakoda H, Okada T, et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol. 2017;794:37–44.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif