An Update on the Use of Artificial Intelligence in Digital Pathology for Oral Epithelial Dysplasia Research

Woo S-B (2019) Oral epithelial dysplasia and premalignancy. Head Neck Pathol 13(3):423–439. https://doi.org/10.1007/s12105-019-01020-6

Article  PubMed  PubMed Central  Google Scholar 

Wenig BM (2017) Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Mod Pathol 30:S112–S128. https://doi.org/10.1038/modpathol.2016.207

Article  PubMed  Google Scholar 

van der Waal I (2009) Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol 45(4):317–323. https://doi.org/10.1016/j.oraloncology.2008.05.016

Article  PubMed  Google Scholar 

Warnakulasuriya S, Ariyawardana A (2016) Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med 45(3):155–166. https://doi.org/10.1111/jop.12339

Article  CAS  PubMed  Google Scholar 

Khoury ZH, Sultan M, Sultan AS (2022) Oral epithelial dysplasia grading systems: a systematic review & meta-analysis. Int J Surg Pathol 30(5):499–511. https://doi.org/10.1177/10668969211070171

Article  CAS  PubMed  Google Scholar 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

Article  CAS  PubMed  Google Scholar 

Fisher RB, Breckon TP, Dawson-Howe K et al (2013) Dictionary of computer vision and image processing. Wiley

Mahmood H, Shaban M, Indave B et al (2020) Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review. Oral Oncol 110:104885. https://doi.org/10.1016/j.oraloncology.2020.104885

Article  CAS  PubMed  Google Scholar 

Baik J, Ye Q, Zhang L et al (2014) Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms. Cell Oncol 37(3):193–202. https://doi.org/10.1007/s13402-014-0172-x

Article  Google Scholar 

Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Proc 29(1):100–132. https://doi.org/10.1016/S0734-189X(85)90153-7

Article  Google Scholar 

Liu Y, Bilodeau E, Pollack B et al (2022) Automated detection of premalignant oral lesions on whole slide images using convolutional neural networks. Oral Oncol 134:106109. https://doi.org/10.1016/j.oraloncology.2022.106109

Article  PubMed  Google Scholar 

Shephard A, Azarmehr N, Bashir RMS et al (2022) A fully automated multi-scale pipeline for oral epithelial dysplasia grading and outcome prediction. Medical Imaging with Deep Learning

Zhang X, Gleber-Netto FO, Wang S et al (2023) Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia. Cancer Med. https://doi.org/10.1002/cam4.5478

Article  PubMed  PubMed Central  Google Scholar 

Nguyen P-T-H, Sakamoto K, Ikeda T (2022) Deep-learning application for identifying histological features of epithelial dysplasia of tongue. J Oral Maxillofac Surg Med Pathol 34(4):514–522. https://doi.org/10.1016/j.ajoms.2021.12.008

Article  Google Scholar 

da Rocha K, Bermudez JCM, Rivero ERC et al (2022) A pathology-based machine learning method to assist in epithelial dysplasia diagnosis. Res Biomed Eng 38(3):989–1002. https://doi.org/10.1007/s42600-022-00234-y

Article  Google Scholar 

Azarmehr N, Shephard A, Mahmood H et al (2021) Automated oral epithelial dysplasia grading using neural networks and feature analysis. Medical Imaging with Deep Learning

Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29. https://doi.org/10.1186/s12880-015-0068-x

Article  PubMed  PubMed Central  Google Scholar 

Ellis BG, Whitley CA, Triantafyllou A et al (2022) Prediction of malignant transformation in oral epithelial dysplasia using infrared absorbance spectra. PLoS ONE 17(3):e0266043. https://doi.org/10.1371/journal.pone.0266043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrer-Sánchez A, Bagan J, Vila-Francés J et al (2022) Prediction of the risk of cancer and the grade of dysplasia in leukoplakia lesions using deep learning. Oral Oncol 132:105967. https://doi.org/10.1016/j.oraloncology.2022.105967

Article  PubMed  Google Scholar 

Ingham J, Smith CI, Ellis BG et al (2022) Prediction of malignant transformation in oral epithelial dysplasia using machine learning. Iop Scinotes 3(3):034001. https://doi.org/10.1088/2633-1357/ac95e2

Article  PubMed  PubMed Central  Google Scholar 

da Rocha K, Bermudez JC, Rivero ER et al (2022) A pathology-based machine learning method to assist in epithelial dysplasia diagnosis. Res Biomed Eng 38(3):989–1002. https://doi.org/10.1007/s42600-022-00234-y

Article  Google Scholar 

Camalan S, Mahmood H, Binol H et al (2021) Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results. Cancers (Basel) 13(6). https://doi.org/10.3390/cancers13061291

Duran-Sierra E, Cheng S, Cuenca R et al (2021) Machine-learning assisted discrimination of precancerous and cancerous from healthy oral tissue based on multispectral autofluorescence lifetime imaging endoscopy. Cancers 13(19):4751. https://doi.org/10.3390/cancers13194751

Article  CAS  PubMed  PubMed Central  Google Scholar 

James BL, Sunny SP, Heidari AE et al (2021) Validation of a point-of-care optical coherence tomography device with machine learning algorithm for detection of oral potentially malignant and malignant lesions. Cancers 13(14):3583. https://doi.org/10.3390/cancers13143583

Article  PubMed  PubMed Central  Google Scholar 

Shephard AJ, Graham S, Bashir RMS et al (2021) Simultaneous nuclear instance and layer segmentation in oral epithelial dysplasia. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp 552–561. https://doi.org/10.48550/arXiv.2108.13904.

Wang R, Naidu A, Wang Y (2021) Oral cancer discrimination and novel oral epithelial dysplasia stratification using FTIR imaging and machine learning. Diagnostics 11(11):2133. https://doi.org/10.3390/diagnostics11112133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song B, Sunny S, Uthoff RD et al (2018) Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomed Opt Express 9(11):5318–5329. https://doi.org/10.1364/boe.9.005318

Article  PubMed  PubMed Central  Google Scholar 

Aubreville M, Knipfer C, Oetter N et al (2017) Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-12320-8

Van Staveren H, Van Veen R, Speelman O et al (2000) Classification of clinical autofluorescence spectra of oral leukoplakia using an artificial neural network: a pilot study. Oral Oncol 36(3):286–293. https://doi.org/10.1016/S1368-8375(00)00004-X

Article  PubMed  Google Scholar 

Navone R, Burlo P, Pich A et al (2007) The impact of liquid-based oral cytology on the diagnosis of oral squamous dysplasia and carcinoma. Cytopathology 18(6):356–360. https://doi.org/10.1111/j.1365-2303.2006.00402.x

Article  CAS  PubMed  Google Scholar 

Wang R, Wang Y (2021) Fourier transform infrared spectroscopy in oral cancer diagnosis. Int J Mol Sci 22(3):1206. https://doi.org/10.3390/ijms22031206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillaud M, Zhang L, Poh C et al (2008) Potential use of quantitative tissue phenotype to predict malignant risk for oral premalignant lesions. Cancer Res 68(9):3099–3107. https://doi.org/10.1158/0008-5472.Can-07-2113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Issa N, Leonas J, Jham BC et al (2022) Early detection of oral potentially malignant disorders using machine learning: a retrospective pilot study. Gen Dent 70(6):60–64

PubMed  Google Scholar 

Birur NP, Song B, Sunny SP et al (2022) Field validation of deep learning based point-of-care device for early detection of oral malignant and potentially malignant disorders. Sci Rep 12(1):14283. https://doi.org/10.1038/s41598-022-18249-x

Article  CAS  Google Scholar 

Farah CS, Janik M, Woo SB et al (2023) Dynamic real-time optical microscopy of oral mucosal lesions using confocal laser endomicroscopy. J Oral Pathol Med 52(6):539–547. https://doi.org/10.1111/jop.13437

Article  PubMed  Google Scholar 

Sultan AS, Elgharib MA, Tavares T et al (2020) The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. Journal of Oral Pathology and Medicine. Blackwell Publishing Ltd., pp 849–856. https://doi.org/10.1111/jop.13042

Mahmood H, Shephard A, Hankinson P et al (2023) Development and validation of a multivariable model for prediction of malignant transformation and recurrence of oral epithelial dysplasia. British Journal of Cancer. 129(10):1599–1607. https://doi.org/10.1038/s41416-023-02438-0

Raja Muhammad Saad Bashir, Adam J. Shephard, Hanya Mahmood, et al. (2023) A digital score of peri-epithelial lymphocytic activity predicts malignant transformation in oral epithelial dysplasia. medRxiv: p. 2023.02.14.23285872. https://doi.org/10.1101/2023.02.14.23285872

Azarmehr N, Shephard A, Mahmood H et al (2022) A neural architecture search based framework for segmentation of epithelium, nuclei and oral epithelial dysplasia grading. In: Medical Image Understanding and analysis lecture notes in computer science. Springer, pp 357–370. hhttps://doi.org/10.1007/978-3-031-12053-4_27

Samyukta S, Harini Priya AHR, Kumar SM et al (2022) An evaluation of the prognosticative value of hyalinization in the biological behaviour of oral lesions using image analysis. Asian Pac J Cancer Prev 23(8):2829–2834https://doi.org/10.31557/apjcp.2022.23.8.2829

Adeoye J, Koohi-Moghadam M, Lo AWI et al (2021) Deep learning predicts the malignant-transformation-free survival of oral potentially malignant disorders. Cancers 13(23):6054. https://doi.org/10.3390/cancers13236054

Article  PubMed  PubMed Central  Google Scholar 

Wu MP, Hsu G, Varvares MA et al (2022) Predicting progression of oral lesions to malignancy using machine learning. Laryngoscope. https://doi.org/10.1002/lary.30285

Article  PubMed  PubMed Central  Google Scholar 

Mittal P, Condina MR, Klingler-Hoffmann M et al (2021) Cancer tissue classification using supervised machine learning applied to MALDI mass spectrometry imaging. Cancers (Basel). 13(21). https://doi.org/10.3390/cancers13215388

Beuque M, Martin-Lorenzo M, Balluff B et al (2021) Machine learning for grading and prognosis of esophageal dysplasia using mass spectrometry and histological imaging. Comput Biol Med 138:104918. https://doi.org/10.1016/j.compbiomed.2021.104918

Article  CAS  PubMed 

留言 (0)

沒有登入
gif