Intraday repeatability of macular layers measurements in glaucomatous and non-glaucomatous patients using spectral-domain optical coherence tomography

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S (2017) Glaucoma. Lancet 390:2183–2193. https://doi.org/10.1016/s0140-6736(17)31469-1

Article  PubMed  Google Scholar 

Mardin C (2013) Structural diagnostics of course observation for glaucoma. Ophthalmologe 110:1036–1044. https://doi.org/10.1007/s00347-012-2672-2

Article  CAS  PubMed  Google Scholar 

Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43:293–320. https://doi.org/10.1016/s0039-6257(98)00049-6

Article  CAS  PubMed  Google Scholar 

Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N (2020) The diagnosis and treatment of glaucoma. Dtsch Arztebl Int 117:225–234. https://doi.org/10.3238/arztebl.2020.0225

Article  PubMed  Google Scholar 

Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardiner SK, Ren R, Yang H, Fortune B, Burgoyne CF, Demirel S (2014) A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 157:540-549 e541-542. https://doi.org/10.1016/j.ajo.2013.11.007

Article  PubMed  Google Scholar 

Mardin C (2020) OCT-Diagnostik beim Glaukom: Tipps & Tricks. Augenheilkunde Update 10:51–63. https://doi.org/10.1055/a-0920-4393

Article  Google Scholar 

Tatham AJ, Medeiros FA, Zangwill LM, Weinreb RN (2015) Strategies to improve early diagnosis in glaucoma. Prog Brain Res 221:103–133. https://doi.org/10.1016/bs.pbr.2015.03.001

Article  PubMed  Google Scholar 

Pazos M, Dyrda AA, Biarnés M, Gómez A, Martín C, Mora C, Fatti G, Antón A (2017) Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 124:1218–1228. https://doi.org/10.1016/j.ophtha.2017.03.044

Article  PubMed  Google Scholar 

Reis AS, O’Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, Chauhan BC (2012) Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 53:1852–1860. https://doi.org/10.1167/iovs.11-9309

Article  PubMed  PubMed Central  Google Scholar 

Enders P, Schaub F, Hermann MM, Cursiefen C, Heindl LM (2017) Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography. Br J Ophthalmol 101:138–142. https://doi.org/10.1136/bjophthalmol-2015-307730

Article  PubMed  Google Scholar 

Enders P, Schaub F, Adler W, Hermann MM, Dietlein TS, Cursiefen C, Heindl LM, Medscape (2018) Bruch’s membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye (Lond) 32:314–323. https://doi.org/10.1038/eye.2017.306

Article  CAS  PubMed  Google Scholar 

Enders P, Schaub F, Adler W, Nikoluk R, Hermann MM, Heindl LM (2017) The use of Bruch’s membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol 101:530–535. https://doi.org/10.1136/bjophthalmol-2016-308957

Article  PubMed  Google Scholar 

Enders P, Adler W, Kiessling D, Weber V, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2019) Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 97:60–67. https://doi.org/10.1111/aos.13698

Article  PubMed  Google Scholar 

Chauhan BC, O’Leary N, AlMobarak FA, Reis ASC, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120:535–543. https://doi.org/10.1016/j.ophtha.2012.09.055

Article  PubMed  Google Scholar 

Toshev AP, Lamparter J, Pfeiffer N, Hoffmann EM (2017) Bruch’s membrane opening-minimum rim width assessment with spectral-domain optical coherence tomography performs better than confocal scanning laser ophthalmoscopy in discriminating early glaucoma patients from control subjects. J Glaucoma 26:27–33. https://doi.org/10.1097/IJG.0000000000000532

Article  PubMed  Google Scholar 

Grewal DS, Tanna AP (2013) Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol 24:150–161. https://doi.org/10.1097/ICU.0b013e32835d9e27

Article  PubMed  Google Scholar 

Ajtony C, Balla Z, Somoskeoy S, Kovacs B (2007) Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 48:258–263. https://doi.org/10.1167/iovs.06-0410

Article  PubMed  Google Scholar 

Enders P, Bremen A, Schaub F, Hermann MM, Diestelhorst M, Dietlein T, Cursiefen C, Heindl LM (2017) Intraday repeatability of Bruch’s membrane opening-based neuroretinal rim measurements. Invest Ophthalmol Vis Sci 58:5195–5200. https://doi.org/10.1167/iovs.17-22812

Article  PubMed  Google Scholar 

He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF (2014) Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 55:574–586. https://doi.org/10.1167/iovs.13-13245

Article  PubMed  PubMed Central  Google Scholar 

Unterlauft JD, Theilig T, Hasan S, Bohm MR, Rauscher F (2020) Analysis of glaucomatous changes of the macula using optical coherence tomography. Klin Monbl Augenheilkd 237:185–191. https://doi.org/10.1055/a-0808-4807

Article  PubMed  Google Scholar 

Unterlauft JD, Rehak M, Bohm MRR, Rauscher FG (2018) Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS One 13:e0209610. https://doi.org/10.1371/journal.pone.0209610

Article  PubMed  PubMed Central  Google Scholar 

Takayama K, Hangai M, Durbin M, Nakano N, Morooka S, Akagi T, Ikeda HO, Yoshimura N (2012) A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:6904–6913. https://doi.org/10.1167/iovs.12-10210

Article  PubMed  Google Scholar 

Hood DC (2017) Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 57:46–75. https://doi.org/10.1016/j.preteyeres.2016.12.002

Article  PubMed  Google Scholar 

Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21. https://doi.org/10.1016/j.preteyeres.2012.08.003

Article  PubMed  Google Scholar 

Ctori I, Huntjens B (2015) Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS One 10:e0129005. https://doi.org/10.1371/journal.pone.0129005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429. https://doi.org/10.1167/iovs.12-11273

Article  PubMed  Google Scholar 

Gardiner SK, Demirel S, Reynaud J, Fortune B (2016) Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Invest Ophthalmol Vis Sci 57:1221–1227. https://doi.org/10.1167/iovs.15-18788

Article  PubMed  PubMed Central  Google Scholar 

No authors listed (2021) European Glaucoma Society terminology and guidelines for glaucoma, 5th edn. Br J Ophthalmol 105:1–169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Fingeret M, Suh MH, Hood DC, Ritch R (2018) Heidelberg Engineering GmbH. Glaucoma imaging atlas. A diagnostic imaging guide for assessment and management. buch.one - Offsetdruckerei Karl Grammlich GmbH, Pliezhausen

Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ (2012) Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol 130:312–318. https://doi.org/10.1001/archopthalmol.2011.1576

Article  PubMed  PubMed Central  Google Scholar 

Heindl LM, Adler W, El-Malahi O, Schaub F, Hermann MM, Dietlein TS, Cursiefen C, Enders P (2018) The optimal diameter for circumpapillary retinal nerve fiber layer thickness measurement by SD-OCT in glaucoma. J Glaucoma 27:1086–1093. https://doi.org/10.1097/IJG.0000000000001027

Article  PubMed  Google Scholar 

Rüfer F, Bartsch JJ, Erb C, Riehl A, Zeitz PF (2016) Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT). Graefes Arch Clin Exp Ophthalmol 254:2017–2023. https://doi.org/10.1007/s00417-016-3453-4

Article  PubMed  Google Scholar 

Mansberger SL, Menda SA, Fortune BA, Gardiner SK, Demirel S (2017) Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma. Am J Ophthalmol 174:1–8. https://doi.org/10.1016/j.ajo.2016.10.020

Article  PubMed  Google Scholar 

Cohen J (1988) The signifiance of product moment r. In: Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Publishers, Hillsdale, pp 79–81

留言 (0)

沒有登入
gif