Differences in archaeal diversity and potential ecological functions between saline and hypersaline lakes on Qinghai-Tibet Plateau were driven by multiple environmental and non-environmental factors beyond the salinity

Saccò M, White NE, Harrod C, Salazar G, Aguilar P, Cubillos CF, Meredith K, Baxter BK, Oren A, Anufriieva E, et al. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol Rev. 2021;96(6):2828–50.

Article  PubMed  Google Scholar 

Liu Y, Priscu JC, Xiong J, Conrad R, Vick-Majors T, Chu H, Hou J. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol. 2016;92(3):fiw033.

Article  PubMed  Google Scholar 

Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28(1):56–63.

Article  CAS  PubMed  Google Scholar 

Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 2001;5(2):73–83.

Article  CAS  PubMed  Google Scholar 

Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL. Microbial response to salinity change in Lake Chaka, a hypersaline lake on tibetan plateau. Environ Microbiol. 2007;9(10):2603–21.

Article  CAS  PubMed  Google Scholar 

Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK. Temporal study of the microbial diversity of the north arm of Great Salt Lake, Utah, U.S. Microorganisms. 2015; 3(3):310 – 26.

Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5(7):887–900.

Article  CAS  PubMed  Google Scholar 

Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357(6351):eaaf3883.

Article  PubMed  Google Scholar 

Andrei AŞ, Banciu HL, Oren A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett. 2012;330(1):1–9.

Article  CAS  PubMed  Google Scholar 

Jiang H, Dong H, Deng S, Yu B, Huang Q, Wu Q. Response of archaeal community structure to environmental changes in lakes on the Tibetan Plateau, Northwestern China. Geomicrobiol J. 2009;26(4):289–97.

Article  CAS  Google Scholar 

Zhong ZP, Liu Y, Miao LL, Wang F, Chu LM, Wang JL, Liu ZP. Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau. Appl Environ Microb. 2016;82(6):1846–58.

Article  CAS  Google Scholar 

Ji M, Kong W, Yue L, Wang J, Deng Y, Zhu L. Salinity reduces bacterial diversity, but increases network complexity in tibetan Plateau lakes. FEMS Microbiol Ecol. 2019;95(12):fiz190.

Article  CAS  PubMed  Google Scholar 

Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7(11):2069–79.

Article  PubMed  PubMed Central  Google Scholar 

Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in microbial populations: theory and experimental model systems. J Mol Biol. 2019;431(23):4599–644.

Article  CAS  PubMed  Google Scholar 

Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa JC, Roux S, Vincent F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348(6237):1262073.

Article  PubMed  Google Scholar 

Zhou J, Song X, Zhang C-Y, Chen G-F, Lao Y-M, Jin H, Cai Z-H. Distribution patterns of microbial community structure along a 7000-mile latitudinal transect from the Mediterranean Sea across the Atlantic Ocean to the Brazilian Coastal Sea. Microb Ecol. 2018;76(3):592–609.

Article  CAS  PubMed  Google Scholar 

He Y, Sen B, Shang J, He Y, Xie N, Zhang Y, Zhang J, Johnson ZI, Wang G. Seasonal influence of scallop culture on nutrient flux, bacterial pathogens and bacterioplankton diversity across estuaries off the Bohai Sea Coast of Northern China. Mar Pollut Bull. 2017;124(1):411–20.

Article  CAS  PubMed  Google Scholar 

He C, Lin W, Zheng X, Wang C, Hu Z, Wang W. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol. Bioresour Technol. 2019;291:121874.

Article  CAS  PubMed  Google Scholar 

Wang G, Li Q, Gao X, Wang XC. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms. Bioresour Technol. 2018;250:812–20.

Article  CAS  PubMed  Google Scholar 

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.

Article  Google Scholar 

Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30(5):614–20.

Article  CAS  PubMed  Google Scholar 

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

Article  CAS  PubMed  Google Scholar 

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75(23):7537–41.

Article  CAS  Google Scholar 

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338):631–7.

Article  CAS  PubMed  Google Scholar 

Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272–77.

Article  CAS  PubMed  Google Scholar 

Tazi L, Breakwell DP, Harker AR, Crandall KA. Life in extreme environments: microbial diversity in Great Salt Lake. Utah Extremophiles. 2014;18(3):525–35.

Article  PubMed  Google Scholar 

Jacob JH, Hussein EI, Shakhatreh MAK, Cornelison CT. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing. MicrobiologyOpen. 2017;6(5):e00500.

Article  PubMed  PubMed Central  Google Scholar 

Maldonado MJ, Albarracín VH, Lara JA, Ferrero MA, Farías ME. Culture-dependent and -independent methods reveal dominance of halophilic Euryarchaeota in high-altitude Andean lakes. Aquat Microb Ecol. 2018;81(2):171–88.

Article  Google Scholar 

Torregrosa-Crespo J, Bergaust L, Pire C, Martínez-Espinosa RM. Denitrifying haloarchaea: sources and sinks of nitrogenous gases. FEMS Microbiol Lett. 2017;365(3):fnx270.

Google Scholar 

Alcántara-Hernández RJ, Cs V-E, Zavala-Díaz, de la Serna FJ, Rodriguez-Revilla J, Dendooven L, Marsch R. Haloarchaeal assimilatory nitrate-reducing communities from a saline alkaline soil. FEMS Microbiol Lett. 2009; 298(1):56–66.

Jiang H, Huang J, Yang J. Halotolerant and halophilic microbes and their environmental implications in saline and hypersaline lakes in Qinghai Province, China. In: Extremophiles in eurasian ecosystems: ecology, diversity, and applications. vol. 8; 2018: 299–316.

Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, Liu Y, Banfield JF, Gu J-D. Insights into the ecology, evolution, and metabolism of the widespread woesearchaeotal lineages. Microbiome. 2018;6(1):1–16.

Article  Google Scholar 

Ortiz-Alvarez R, Casamayor EO. High occurrence of Pacearchaeota and Woesearchaeota (Archaea Superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 2016;8(2):210–7.

Article  CAS  PubMed  Google Scholar 

Liu X, Wang Y, Gu JD. Ecological distribution and potential roles of Woesearchaeota in anaerobic biogeochemical cycling unveiled by genomic analysis. Comput Struct Biotechnol J. 2021;19:794–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J, Smith JA, Li M, Holmes DE. Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens. mBio. 2023;14(4):e0036023.

Article  PubMed  Google Scholar 

Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol. 2023;14:1206414.

Article  PubMed  PubMed Central  Google Scholar 

Gagliano MC, Sampara P, Plugge CM, Temmink H, Sudmalis D, Ziels RM, Atomi H. Functional insights of salinity stress-related pathways in metagenome-resolved Methanothrix genomes. Appl Environ Microb. 2022;88(10):e02449–21.

Article  Google Scholar 

Camacho A, Picazo A, Rochera C, Santamans A, Morant D, Miralles-Lorenzo J, Castillo-Escrivà A. Methane emissions in Spanish saline lakes: current rates, temperature and salinity responses, and evolution under different climate change scenarios. Water. 2017;9(9):659.

Article  Google Scholar 

Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seaf

留言 (0)

沒有登入
gif