Monitoring human exposure to four parabens and triclosan: comparing silicone wristbands with spot urine samples as predictors of internal dose

Exposures add up—Survey results|Environmental Working Group. https://www.ewg.org/news-insights/news/2004/12/exposures-add-survey-results#.WaXIT8iGPIU Accessed 20 December 2022.

Estrada LV, Levasseur JL, Maxim A, Benavidez GA, Porter KMP. Structural racism, place, and covid-19: a narrative review describing how we prepare for an endemic COVID-19 future. Heal Equity. 2022;6:356–66. https://doi.org/10.1089/HEQ.2021.0190.

Article  Google Scholar 

Johnson PI, Favela K, Jarin J, Le AM, Clark PY, Fu L, et al. Chemicals of concern in personal care products used by women of color in three communities of California. J Expo Sci Environ Epidemiol 2022. 2022;32:864–76. https://doi.org/10.1038/s41370-022-00485-y.

Article  CAS  Google Scholar 

Dodson RE, Setzer RW, Spengler JD, Brody JG, Rudel RA, Laurent JGC. Influence of living in the same home on biomonitored levels of consumer product chemicals. J Expo Sci Environ Epidemiol. 2021:1–7. https://doi.org/10.1038/s41370-021-00368-8.

Dodson RE, Cardona B, Zota AR, Robinson Flint J, Navarro S, Shamasunder B. Personal care product use among diverse women in California: Taking Stock Study. J Expo Sci Environ Epidemiol. 2021;31:487–502. https://doi.org/10.1038/s41370-021-00327-3.

Article  PubMed  Google Scholar 

Chang CJ, O’Brien KM, Keil AP, Gaston SA, Jackson CL, Sandler DP, et al. Use of straighteners and other hair products and incident uterine cancer. J Natl Cancer Inst. 2022;114:1636–45. https://doi.org/10.1093/JNCI/DJAC165.

Article  PubMed  PubMed Central  Google Scholar 

Chan M, Mita C, Bellavia A, Parker M, James-Todd T. Racial/ethnic disparities in pregnancy and prenatal exposure to endocrine-disrupting chemicals commonly used in personal care products. Curr Environ Heal Rep. 2021;8:98–112. https://doi.org/10.1007/S40572-021-00317-5/TABLES/3.

Article  Google Scholar 

Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: current knowledge, recommendations for use, and future directions. Environ Int. 2022;169:107339. https://doi.org/10.1016/J.ENVINT.2022.107339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammel SC, Levasseur JL, Hoffman K, Phillips AL, Lorenzo AM, Calafat AM, et al. Children’s exposure to phthalates and non-phthalate plasticizers in the home: the TESIE study. Environ Int. 2019;132:105061. https://doi.org/10.1016/j.envint.2019.105061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levasseur JL, Hammel SC, Hoffman K, Phillips AL, Zhang S, Ye X, et al. Young children’s exposure to phenols in the home: associations between house dust, hand wipes, silicone wristbands, and urinary biomarkers. Environ Int. 2021;147:106317. https://doi.org/10.1016/j.envint.2020.106317.

Article  CAS  PubMed  Google Scholar 

Hammel SC, Phillips AL, Hoffman K, Stapleton HM. Evaluating the use of silicone wristbands to measure personal exposure to brominated flame retardants. Environ Sci Technol. 2018;52:11875–85. https://doi.org/10.1021/acs.est.8b03755.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon HM. Applications of silicone wristbands to improve personal chemical exposure assessment. Accessed 9 July 2021. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7w62ff66z?locale=en.

Bergmann AJ, North PE, Vasquez L, Bello H, Del Carmen Gastañaga Ruiz M, Anderson KA. Multi-class chemical exposure in rural Peru using silicone wristbands. J Expo Sci Environ Epidemiol. 2017;27:560–8. https://doi.org/10.1038/jes.2017.12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Connell SG, Kincl LD, Anderson KA. Silicone wristbands as personal passive samplers. Environ Sci Technol. 2014;48:3327–35. https://doi.org/10.1021/es405022f.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon HM, Armstrong G, Barton M, Bergmann AJ, Bondy M, Halbleib ML, et al. Discovery of common chemical exposures across three continents using silicone wristbands. R Soc Open Sci. 2019;6:181836. https://doi.org/10.1098/rsos.181836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Romanak KA, Stubbings WA, Arrandale VH, Hendryx M, Diamond ML, et al. Silicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs). Environ Int. 2019;132:105104. https://doi.org/10.1016/j.envint.2019.105104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammel SC, Hoffman K, Webster TF, Anderson KA, Stapleton HM. Measuring personal exposure to organophosphate flame retardants using silicone wristbands and hand wipes. Environ Sci Technol. 2016;50:4483–91. https://doi.org/10.1021/acs.est.6b00030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weschler CJ, Nazaroff WW. Semivolatile organic compounds in indoor environments. Atmos Environ. 2008;42:9018–40. https://doi.org/10.1016/j.atmosenv.2008.09.052.

Article  CAS  Google Scholar 

Hoffman K, Hammel SC, Phillips AL, Lorenzo AM, Chen A, Calafat AM, et al. Biomarkers of exposure to SVOCs in children and their demographic associations: the TESIE study. Environ Int. 2018;119:26–36. https://doi.org/10.1016/j.envint.2018.06.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammel S. Evaluating exposures to semi-volatile organic compounds in indoor environments using silicone wristbands. Duke University; 2019. https://hdl.handle.net/10161/19834.

Lucattini L, Poma G, Covaci A, de Boer J, Lamoree MH, Leonards PEG. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere. 2018;201:466–82. https://doi.org/10.1016/j.chemosphere.2018.02.161.

Article  CAS  PubMed  Google Scholar 

Ma S, Yue C, Tang J, Lin M, Zhuo M, Yang Y, et al. Occurrence and distribution of typical semi-volatile organic chemicals (SVOCs) in paired indoor and outdoor atmospheric fine particle samples from cities in southern China. Environ Pollut. 2021;269:116123. https://doi.org/10.1016/j.envpol.2020.116123.

Article  CAS  PubMed  Google Scholar 

Weschler CJ, Nazaroff WW. Dermal uptake of organic vapors commonly found in indoor air. Environ Sci Technol. 2014;48:1230–7. https://doi.org/10.1021/es405490a.

Article  CAS  PubMed  Google Scholar 

Weschler CJ, Nazaroff WW. SVOC exposure indoors: fresh look at dermal pathways. Indoor Air. 2012;22:356–77. https://doi.org/10.1111/j.1600-0668.2012.00772.x.

Article  CAS  PubMed  Google Scholar 

Wallace L. Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies. Aerosol Sci Technol. 2000;32:15–25. https://doi.org/10.1080/027868200303894.

Article  CAS  Google Scholar 

Wallace LA. Personal exposure to 25 volatile organic compounds Epa’s 1987 team study in Los Angeles, California. Toxicol Ind Health. 1991;7:203–8. https://doi.org/10.1177/074823379100700523.

Article  CAS  PubMed  Google Scholar 

Licina D, Tian Y, Nazaroff WW. Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air. 2017;27:791–802. https://doi.org/10.1111/INA.12365.

Article  CAS  PubMed  Google Scholar 

Lim S. Science of the total environment the associations between personal care products use and urinary concentrations of phthalates, parabens, and triclosan in various age groups: The Korean National Environmental Health Survey Cycle. Sci Total Environ. 2020;742:140640. https://doi.org/10.1016/j.scitotenv.2020.140640.

Article  CAS  PubMed  Google Scholar 

Peinado FM, Ocón-Hernández O, Iribarne-Durán LM, Vela-Soria F, Ubiña A, Padilla C, et al. Cosmetic and personal care product use, urinary levels of parabens and benzophenones, and risk of endometriosis: results from the EndEA study. Environ Res. 2021;196:110342. https://doi.org/10.1016/J.ENVRES.2020.110342.

Article  CAS  PubMed  Google Scholar 

Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J Expo Sci Environ Epidemiol. 2014;24:459–66. https://doi.org/10.1038/jes.2013.69.

Article  CAS  PubMed  Google Scholar 

Hajizadeh Y, Kiani Feizabadi G, Feizi A. Exposure to parabens through the use of personal care products among Iranian men. Arch Environ Contam Toxicol. 2021;80:587–600. https://doi.org/10.1007/s00244-021-00818-2.

Article  CAS  PubMed  Google Scholar 

Kim S, Lee S, Shin C, Lee J, Kim S, Lee A, et al. Urinary parabens and triclosan concentrations and associated exposure characteristics in a Korean population—a comparison between night-time and first-morning urine. Int J Hyg Environ Health. 2018;221:632–41. https://doi.org/10.1016/j.ijheh.2018.03.009.

Article  CAS  PubMed  Google Scholar 

Hoffman K, Levasseur JL, Zhang S, Hay D, Herkert NJ, Stapleton HM. Monitoring human exposure to organophosphate esters: comparing silicone wristbands with spot urine samples as predictors of internal dose. Environ Sci Technol Lett. 2021;8:45. https://doi.org/10.1021/acs.estlett.1c00629.

Article  CAS  Google Scholar 

Taylor JK. Quality assurance of chemical measurements. Anal Chem. 1987;53:1588–96. https://doi.org/10.1021/ac00237a001.

Article  Google Scholar 

Ren L, Fang J, Liu G, Zhang J, Zhu Z, Liu H, et al. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2′-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2016;408:2621–9. https://doi.org/10.1007/S00216-016-9372-8/METRICS.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif