Genomic sequencing surveillance of patients colonized with vancomycin-resistant Enterococcus (VRE) improves detection of hospital-associated transmission

Abstract

Background: Vancomycin-resistant enterococcal (VRE) infections pose significant challenges in healthcare. Transmission dynamics of VRE are complex, often involving patient colonization and subsequent transmission through various healthcare-associated vectors. We utilized a whole genome sequencing (WGS) surveillance program at our institution to better understand the contribution of clinical and colonizing isolates to VRE transmission. Methods: We performed whole genome sequencing on 352 VRE clinical isolates collected over 34 months and 891 rectal screening isolates collected over a 9-month nested period, and used single nucleotide polymorphisms to assess relatedness. We then performed a geo-temporal transmission analysis considering both clinical and rectal screening isolates compared with clinical isolates alone, and calculated 30-day outcomes of patients. Results: VRE rectal carriage constituted 87.3% of VRE acquisition, with an average monthly acquisition rate of 7.6 per 1000 patient days. We identified 185 genetically related clusters containing 2-42 isolates and encompassing 69.6% of all isolates in the dataset. The inclusion of rectal swab isolates increased the detection of clinical isolate clusters (from 53% to 67%, P<0.01). Geo-temporal analysis identified hotspot locations of VRE transmission. Patients with clinical VRE isolates that were closely related to previously sampled rectal swab isolates experienced 30-day ICU admission (17.5%), hospital readmission (9.2%), and death (13.3%). Conclusions: Our findings describe the high burden of VRE transmission at our hospital and shed light on the importance of using WGS surveillance of both clinical and rectal screening isolates to better understand the transmission of this pathogen. This study highlights the potential utility of incorporating WGS surveillance of VRE into routine hospital practice for improving infection prevention and patient safety.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was funded in part by the National Institutes of Health (NIH) through grants R01AI127472 to LHH and R01AI165519 to DVT.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethics approval was obtained from the University of Pittsburgh Institutional Review Board (Protocol STUDY21040126).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

留言 (0)

沒有登入
gif