Nonlinear and quantum photonics using integrated optical materials

Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006). This work reports broadband phase-matched four-wave mixing optical amplification and frequency conversion in a silicon photonic chip through waveguide dispersion engineering.

Article  CAS  PubMed  Google Scholar 

Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

Article  CAS  PubMed  Google Scholar 

Bell, B. A., He, J., Xiong, C. & Eggleton, B. J. Frequency conversion in silicon in the single photon regime. Opt. Express 24, 5235–5242 (2016).

Article  CAS  PubMed  Google Scholar 

Yamada, H. et al. Nonlinear-optic silicon-nanowire waveguides. Jpn. J. Appl. Phys. 44, 6541–6545 (2005).

Article  CAS  Google Scholar 

Sederberg, S., Firby, C. J. & Elezzabi, A. Y. Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation. Opt. Express 27, 4990–5004 (2019).

Article  CAS  PubMed  Google Scholar 

Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

Article  CAS  Google Scholar 

Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36 (2019).

Article  CAS  Google Scholar 

Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

Article  PubMed  Google Scholar 

Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

Article  CAS  PubMed  Google Scholar 

Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

Article  CAS  Google Scholar 

Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

Article  CAS  Google Scholar 

Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

Article  CAS  Google Scholar 

Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

Article  CAS  Google Scholar 

Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

Article  CAS  Google Scholar 

Cai, L., Li, J., Wang, R. & Li, Q. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform. Photon. Res. 10, 870–876 (2022).

Article  CAS  Google Scholar 

Cardenas, J. et al. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett. 40, 4138 (2015).

Article  CAS  PubMed  Google Scholar 

Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

Article  CAS  PubMed  Google Scholar 

Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554–559 (2012).

Article  CAS  Google Scholar 

Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

Article  CAS  PubMed  Google Scholar 

Joshi, C., Farsi, A., Clemmen, S., Ramelow, S. & Gaeta, A. L. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun. 9, 847 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lu, H.-H. et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018).

Article  CAS  PubMed  Google Scholar 

Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016). This work extends Kerr frequency comb platforms to the discrete-variable quantum regime to demonstrate complex quantum optical states showing multiphoton entanglement.

Article  CAS  PubMed  Google Scholar 

Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

Article  CAS  PubMed  Google Scholar 

Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

Article  CAS  Google Scholar 

Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401 (2018). This paper presents the first demonstration of an external-power-source-free Kerr frequency comb powered by a battery, including low-noise soliton states.

Article  CAS  PubMed  Google Scholar 

Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

Article  CAS  PubMed  Google Scholar 

Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018). This work presents a microresonator frequency comb used to parallelize a LiDAR measurement of distance and velocity.

Article  CAS  PubMed  Google Scholar 

Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

Article  CAS  PubMed  Google Scholar 

Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016). This paper presents precise higher-order dispersion control in wedge resonators with quality factors above 100 million, which is important for low-power nonlinear optics.

Article  CAS  Google Scholar 

Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619 (2017). In this work, high-quality factors of up to 67 million in high-confinement silicon nitride resonators are achieved by substantially reducing the surface roughness of the waveguide.

Article  Google Scholar 

Spencer, D. T., Bauters, J. F., Heck, M. J. R. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

Article  CAS  Google Scholar 

Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

Article  CAS  Google Scholar 

Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

Article  PubMed  Google Scholar 

Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

Article  CAS  Google Scholar 

Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

Article  CAS  Google Scholar 

Xie, W. et al. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 28, 32894 (2020). A low threshold of <120 µW for frequency-comb generation is achieved in AlGaAs microresonators with quality factor greater than 106.

Article  CAS  PubMed  Google Scholar 

Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

Sipe, J. E., Moss, D. J. & van Driel, H. M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B 35, 1129–1141 (1987).

Article  CAS  Google Scholar 

Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258 (2022). This paper holds the current record for the highest nonlinearity-to-loss ratio in solid-state parametric nonlinear optical platforms.

Article  CAS  Google Scholar 

Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12, 5428 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J.-Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244–1245 (2019).

留言 (0)

沒有登入
gif