Carbon ion radiotherapy in gynaecological oncology: where we are and where we are headed

Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12103022.

Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, et al. The role of Carbon Ion Therapy in the changing Oncology Landscape-A Narrative Review of the literature and the Decade of Carbon Ion experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel). 2023;15. https://doi.org/10.3390/cancers15205068.

Ronchi S, Cicchetti A, Bonora M, Ingargiola R, Camarda AM, Russo S, et al. Curative carbon ion radiotherapy in a head and neck mucosal melanoma series: facing the future within multidisciplinarity. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2023;190:110003. https://doi.org/10.1016/j.radonc.2023.110003.

Article  Google Scholar 

Ikawa H, Koto M, Hayashi K, Tonogi M, Takagi R, Nomura T, et al. Feasibility of carbon-ion radiotherapy for oral non-squamous cell carcinomas. Head Neck. 2019;41:1795–803. https://doi.org/10.1002/hed.25618.

Article  Google Scholar 

Mizoe J-E, Hasegawa A, Jingu K, Takagi R, Bessyo H, Morikawa T, et al. Results of carbon ion radiotherapy for head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;103:32–7. https://doi.org/10.1016/j.radonc.2011.12.013.

Article  Google Scholar 

Vischioni B, Bonora M, Ronchi S, Ingargiola R, Camarda AM, Motinetli S, et al. OC-0110 Head and neck adenoid cystic carcinoma treated with raster scanning carbon ion radiotherapy at CNAO. Radiother Oncol. 2023;182:S70–1. https://doi.org/10.1016/S0167-8140(23)08524-9.

Article  Google Scholar 

Akbaba S, Lang K, Held T, Bulut OC, Mattke M, Uhl M, et al. Accelerated hypofractionated active raster-scanned Carbon Ion Radiotherapy (CIRT) for laryngeal malignancies: feasibility and safety. Cancers (Basel). 2018;10. https://doi.org/10.3390/cancers10100388.

Imai R, Kamada T, Araki N. Carbon ion radiotherapy for unresectable localized axial soft tissue sarcoma. Cancer Med. 2018;7:4308–14. https://doi.org/10.1002/cam4.1679.

Article  Google Scholar 

Demizu Y, Jin D, Sulaiman NS, Nagano F, Terashima K, Tokumaru S, et al. Particle therapy using protons or Carbon ions for Unresectable or incompletely resected bone and soft tissue sarcomas of the Pelvis. Int J Radiat Oncol Biol Phys. 2017;98:367–74. https://doi.org/10.1016/j.ijrobp.2017.02.030.

Article  Google Scholar 

Cuccia F, Fiore MR, Barcellini A, Iannalfi A, Vischioni B, Ronchi S, et al. Outcome and Toxicity of Carbon Ion Radiotherapy for Axial Bone and Soft tissue sarcomas. Anticancer Res. 2020;40. https://doi.org/10.21873/anticanres.14260.

Mattke M, Ohlinger M, Bougatf N, Harrabi S, Wolf R, Seidensaal K, et al. Proton and carbon ion beam treatment with active raster scanning method in 147 patients with skull base chordoma at the Heidelberg Ion Beam Therapy Center-a single-center experience. Strahlentherapie Und Onkol Organ Der Dtsch Rontgengesellschaft [et Al]. 2023;199:160–8. https://doi.org/10.1007/s00066-022-02002-4.

Article  Google Scholar 

Iannalfi A, D’Ippolito E, Riva G, Molinelli S, Gandini S, Viselner G, et al. Proton and carbon ion radiotherapy in skull base chordomas: a prospective study based on a dual particle and a patient-customized treatment strategy. Neuro Oncol. 2020;22. https://doi.org/10.1093/neuonc/noaa067.

Wang L, Wang X, Zhang Q, Ran J, Geng Y, Feng S, et al. Is there a role for carbon therapy in the treatment of gynecological carcinomas? A systematic review. Future Oncol. 2019;15:3081–95. https://doi.org/10.2217/fon-2019-0187.

Article  Google Scholar 

Zhang J, Si J, Gan L, Di C, Xie Y, Sun C, et al. Research progress on therapeutic targeting of quiescent cancer cells. Artif Cells Nanomed Biotechnol. 2019;47:2810–20. https://doi.org/10.1080/21691401.2019.1638793.

Article  Google Scholar 

Zhang J, Xie Y, Liu X, Gan L, Li P, Dou Z, et al. Carbon ions trigger DNA damage response to overcome radioresistance by regulating β-catenin signaling in quiescent HeLa cells. J Cell Physiol. 2023;238:1836–49. https://doi.org/10.1002/jcp.31052.

Article  Google Scholar 

Yao G, Tang J, Yang X, Zhao Y, Zhou R, Meng R, et al. Cyclin K interacts with β-catenin to induce cyclin D1 expression and facilitates tumorigenesis and radioresistance in lung cancer. Theranostics. 2020;10:11144–58. https://doi.org/10.7150/thno.42578.

Article  Google Scholar 

Zhang J, Si J, Gan L, Guo M, Yan J, Chen Y, et al. Inhibition of wnt signalling pathway by XAV939 enhances radiosensitivity in human cervical cancer HeLa cells. Artif Cells Nanomed Biotechnol. 2020;48:479–87. https://doi.org/10.1080/21691401.2020.1716779.

Article  Google Scholar 

Ge Y-X, Wang C-H, Hu F-Y, Pan L-X, Min J, Niu K-Y, et al. New advances of TMEM88 in cancer initiation and progression, with special emphasis on wnt signaling pathway. J Cell Physiol. 2018;233:79–87. https://doi.org/10.1002/jcp.25853.

Article  Google Scholar 

Yang G, Shen T, Yi X, Zhang Z, Tang C, Wang L, et al. Crosstalk between long non-coding RNAs and Wnt/β-catenin signalling in cancer. J Cell Mol Med. 2018;22:2062–70. https://doi.org/10.1111/jcmm.13522.

Article  Google Scholar 

Jing Q, Li G, Chen X, Liu C, Lu S, Zheng H, et al. Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. J Cell Mol Med. 2019;23:4711–22. https://doi.org/10.1111/jcmm.14394.

Article  Google Scholar 

Li S, Huang H, Xing M, Qin J, Zhang H, Liu Y, et al. Carbon Ion induces cell death and G2/M arrest through pRb/E2F1Chk2/Cdc2 signaling pathway in X-ray resistant B16F10 melanoma cells. Dose Response. 2022;20:15593258221092364. https://doi.org/10.1177/15593258221092364.

Article  Google Scholar 

Charalampopoulou A, Barcellini A, Frittitta GE, Fulgini G, Ivaldi GB, Magro G et al. In Vitro effects of Photon Beam and Carbon Ion Radiotherapy on the Perineural Invasion of Two Cell Lines of Neurotropic Tumours. Life 2023;13. https://doi.org/10.3390/life13030794.

Charalampopoulou A, Barcellini A, Carnevale F, Ciocca M, Faris P, Moccia F, et al. PD-0489 effect of C-ions on activation of mucosal melanoma cells through alterations in Ca2 + signaling. Radiother Oncol. 2022;170:S439. https://doi.org/10.1016/S0167-8140(22)02860-2.

Article  Google Scholar 

Demaria S, Formenti SC. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol. 2012;2:95. https://doi.org/10.3389/fonc.2012.00095.

Article  Google Scholar 

Yoshimoto Y, Oike T, Okonogi N, Suzuki Y, Ando K, Sato H, et al. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res. 2015;56:509–14. https://doi.org/10.1093/jrr/rrv007.

Article  Google Scholar 

Onishi M, Okonogi N, Oike T, Yoshimoto Y, Sato H, Suzuki Y, et al. High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells. J Radiat Res. 2018;59:541–6. https://doi.org/10.1093/jrr/rry049.

Article  Google Scholar 

Iijima M, Okonogi N, Nakajima NI, Morokoshi Y, Kanda H, Yamada T, et al. Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma. J Gynecol Oncol. 2020;31:e19. https://doi.org/10.3802/jgo.2020.31.e19.

Article  Google Scholar 

Zhou H, Tu C, Yang P, Li J, Kepp O, Li H, et al. Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology. 2022;11:2057892. https://doi.org/10.1080/2162402X.2022.2057892.

Article  Google Scholar 

Wakatsuki M, Kato S, Ohno T, Kiyohara H, Karasawa K, Tamaki T, et al. Difference in distant failure site between locally advanced squamous cell carcinoma and adenocarcinoma of the uterine cervix after C-ion RT. J Radiat Res. 2015;56:523–8. https://doi.org/10.1093/jrr/rru117.

Article  Google Scholar 

Okonogi N, Wakatsuki M, Kato S, Karasawa K, Kiyohara H, Shiba S, et al. Clinical outcomes of carbon ion radiotherapy with concurrent chemotherapy for locally advanced uterine cervical adenocarcinoma in a phase 1/2 clinical trial (protocol 1001). Cancer Med. 2018;7:351–9. https://doi.org/10.1002/cam4.1305.

Article  Google Scholar 

Wakatsuki M, Kato S, Kiyohara H, Ohno T, Karasawa K, Tamaki T, et al. Clinical trial of prophylactic extended-field carbon-ion radiotherapy for locally advanced uterine cervical cancer (protocol 0508). PLoS ONE. 2015;10:e0127587. https://doi.org/10.1371/journal.pone.0127587.

Article  Google Scholar 

Okonogi N, Wakatsuki M, Kato S, Murata H, Kiyohara H, Karasawa K, et al. Significance of concurrent use of weekly cisplatin in carbon-ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix: a propensity score-matched analysis. Cancer Med. 2020;9:1400–8. https://doi.org/10.1002/cam4.2784.

Article  Google Scholar 

Zhang J, Qin L, Chen H-M, Hsu H-C, Chuang C-C, Chen D, et al. Overall survival, locoregional recurrence, and distant metastasis of definitive concurrent chemoradiotherapy for cervical squamous cell carcinoma and adenocarcinoma: before and after propensity score matching analysis of a cohort study. Am J Cancer Res. 2020;10:1808–20.

Google Scholar 

Miyasaka Y, Yoshimoto Y, Murata K, Noda S-E, Ando K, Ebara T, et al. Treatment outcomes of patients with adenocarcinoma of the uterine cervix after definitive radiotherapy and the prognostic impact of tumor-infiltrating CD8 + lymphocytes in pre-treatment biopsy specimens: a multi-institutional retrospective study. J Radiat Res. 2020;61:275–84. https://doi.org/10.1093/jrr/rrz106.

Article  Google Scholar 

Farley JH, Hickey KW, Carlson JW, Rose GS, Kost ER, Harrison TA. Adenosquamous histology predicts a poor outcome for patients with advanced-stage, but not early-stage, cervical carcinoma. Cancer. 2003;97:2196–202. https://doi.org/10.1002/cncr.11371.

Article  Google Scholar 

Niibe Y, Kenjo M, Onishi H, Ogawa Y, Kazumoto T, Ogino I, et al. High-dose-rate intracavitary brachytherapy combined with external beam radiotherapy for stage IIIb adenocarcinoma of the uterine cervix in Japan: a multi-institutional study of Japanese Society of Therapeutic Radiology and Oncology 2006–2007 (study of JA. Jpn J Clin Oncol. 2010;40:795–9. https://doi.org/10.1093/jjco/hyq053.

Article  Google Scholar 

Okonogi N, Ando K, Murata K, Wakatsuki M, Noda S-E, Irie D, et al. Multi-institutional retrospective analysis of Carbon-Ion Radiotherapy for patients with locally Advanced Adenocarcinoma of the Uterine Cervix. Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13112713.

Ohno T, Noda S-E, Murata K, Yoshimoto Y, Okonogi N, Ando K, et al. Phase I study of Carbon Ion Radiotherapy and Image-guided brachytherapy for locally Advanced Cervical Cancer. Cancers (Basel). 2018;10. https://doi.org/10.3390/cancers10090338.

Okonogi N, Murata K, Yamada S, Habu Y, Hori M, Kurokawa T, et al. A phase ib study of Durvalumab (MEDI4736) in combination with Carbon-Ion Radiotherapy and Weekly Cisplatin for patients with locally Advanced Cervical Cancer (DECISION Study): the early safety and efficacy results. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms241310565.

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: prognostic factors and treatment modalities. Gynecol Oncol. 2018;150:180–9. https://doi.org/10.1016/j.ygyno.2018.04.562.

Article  Google Scholar 

Cuccia F, D’Alessandro S, Blasi L, Chiantera V, Ferrera G. The role of Radiotherapy in the management of vaginal melanoma: a Literature Review with a focus on the potential synergistic role of Immunotherapy. J Pers Med. 2023;13. https://doi.org/10.3390/jpm13071142.

Murata H, Okonogi N, Wakatsuki M, Kato S, Kiyohara H, Karasawa K, et al. Long-term outcomes of Carbon-Ion Radiotherapy for Malignant Gynecological Melanoma. Cancers (Basel). 2019;11:482. https://doi.org/10.3390/cancers11040482.

Article  Google Scholar 

Cavalieri S, Ronchi S, Barcellini A, Bonora M, Vischioni B, Vitolo V, et al. Toxicity of carbon ion radiotherapy and immune checkpoint inhibitors in advanced melanoma. Radiother Oncol. 2021. https://doi.org/10.1016/J.RADONC.2021.08.021.

Article  Google Scholar 

Barcellini A, Vitolo V, Lazzari R, Consoli F, Ditto A, Facoetti A, et al. P178 Carbon-Ion radiotherapy for malignant gynecological melanoma. Int J Gynecol Cancer. 2019;29. https://doi.org/10.1136/ijgc-2019-ESGO.238. :A165 LP-A166.

Barcellini A, Vitolo V, Facoetti A, Fossati P, Preda L, Fiore MR, et al. Feasibility of carbon ion radiotherapy in the treatment of gynecological melanoma. Vivo (Brooklyn). 2019;33. https://doi.org/10.21873/invivo.11497.

Barcellini A, Roccio M, Laliscia C, Zanellini F, Pettinato D, Valvo F, et al. Endometrial Cancer: when upfront surgery is not an option. Oncol. 2020. https://doi.org/10.1159/000510690.

Article  Google Scholar 

Irie D, Okonogi N, Wakatsuki M, Kato S, Ohno T, Karasawa K, et al. Carbon-ion radiotherapy for inoperable endometrial carcinoma. J Radiat Res. 2018;59:309–15. https://doi.org/10.1093/jrr/rry003.

Article  Google Scholar 

Draghini L, Maranzano E, Casale M, Trippa F, Anselmo P, Arcidiacono F, et al. Definitive three-dimensional high-dose-rate brachytherapy for inoperable endometrial cancer. J Contemp Brachytherapy. 2017;9:118–23. https://doi.org/10.5114/jcb.2017.67454.

Article  Google Scholar 

Gill BS, Kim H, Houser C, Olsen A, Kelley J, Edwards RP, et al. Image-based three-dimensional conformal brachytherapy for medically inoperable endometrial carcinoma. Brachytherapy. 2014;13:542–7. https://doi.org/10.1016/j.brachy.2014.07.002.

Article  Google Scholar 

留言 (0)

沒有登入
gif