The current use of proteomics and metabolomics in glomerulonephritis: a systematic literature review

Kovesdy CP (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011) 12(1):7–11

Article  PubMed  Google Scholar 

Bikbov B et al (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395(10225):709–733

Article  Google Scholar 

Carney EF (2020) The impact of chronic kidney disease on global health. Nat Rev Nephrol 16(5):251

Article  PubMed  Google Scholar 

Nissenson AR et al (2001) Opportunities for improving the care of patients with chronic renal insufficiency: current practice patterns. J Am Soc Nephrol 12(8):1713–1720

Article  PubMed  Google Scholar 

Ma I et al (2018) Sociodemographic associations with abnormal estimated glomerular filtration rate (eGFR) in a large Canadian city: a cross-sectional observation study. BMC Nephrol 19(1):198

Article  PubMed  PubMed Central  Google Scholar 

Stevens PE et al (2007) Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int 72(1):92–99

Article  CAS  PubMed  Google Scholar 

Hu J et al (2023) Global, regional, and national burden of CKD due to glomerulonephritis from 1990 to 2019: a systematic analysis from the global burden of disease study 2019. Clin J Am Soc Nephrol 18(1):60–71

Article  PubMed  Google Scholar 

Registry, U.R. UK Renal Registry (2022) UK renal registry 24th annual report—data to 31/12/2020. 2022. Accessed 06 Aug 2023]. Available from: https://ukkidney.org/audit-research/annual-report.

Chadban SJ, Atkins RC (2005) Glomerulonephritis. Lancet 365(9473):1797–1806

Article  CAS  PubMed  Google Scholar 

Anders H-J, Jayne DRW, Rovin BH (2016) Hurdles to the introduction of new therapies for immune-mediated kidney diseases. Nat Rev Nephrol 12(4):205–216

Article  CAS  PubMed  Google Scholar 

Anders HJ et al (2023) Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 23(7):453–471

Article  CAS  PubMed  Google Scholar 

Hartl D et al (2021) Translational precision medicine: an industry perspective. J Transl Med 19(1):245

Article  PubMed  PubMed Central  Google Scholar 

Subramanian I et al (2020) Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 14:1177932219899051

Article  PubMed  PubMed Central  Google Scholar 

Schmidt DR et al (2021) Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 71(4):333–358

Article  PubMed  PubMed Central  Google Scholar 

Babu M, Snyder M (2023) Multi-omics profiling for health. Mol Cell Proteomics 22(6):100561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada R et al (2021) Interpretation of omics data analyses. J Hum Genet 66(1):93–102

Article  PubMed  Google Scholar 

Kang M, Ko E, Mersha TB (2022) A roadmap for multi-omics data integration using deep learning. Brief Bioinform 23(1):bbab454

Article  PubMed  Google Scholar 

Verrills NM (2006) Clinical proteomics: present and future prospects. Clin Biochem Rev 27(2):99–116

PubMed  PubMed Central  Google Scholar 

Dotz V et al (2021) O- and N-glycosylation of serum immunoglobulin a is associated with iga nephropathy and glomerular function. J Am Soc Nephrol 32(10):2455–2465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kell DB et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565

Article  CAS  PubMed  Google Scholar 

Zhao Y-Y (2013) Metabolomics in chronic kidney disease. Clin Chim Acta 422:59–69

Article  CAS  PubMed  Google Scholar 

Chetwynd AJ et al (2017) Nanoflow-nanospray mass spectrometry metabolomics reveals disruption of the urinary metabolite profiles of HIV-positive patients on combination antiretroviral therapy. JAIDS J Acquir Immune Defic Syndr 74(2):e45-53

Article  CAS  PubMed  Google Scholar 

Guida F et al (2021) The blood metabolome of incident kidney cancer: a case-control study nested within the MetKid consortium. PLoS Med 18(9):e1003786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han X, Gross RW (2022) The foundations and development of lipidomics. J Lipid Res 63(2):100164

Article  CAS  PubMed  Google Scholar 

Baek J et al (2022) Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 18(1):38–55

Article  CAS  PubMed  Google Scholar 

Eddy S, Mariani LH, Kretzler M (2020) Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol 16(11):657–668

Article  PubMed  Google Scholar 

Provenzano M et al (2021) OMICS in chronic kidney disease: focus on prognosis and prediction. Int J Mol Sci 23(1):336

Article  PubMed  PubMed Central  Google Scholar 

Rovin BH et al (2021) Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 100(4):753–779

Article  PubMed  Google Scholar 

Programme, C.A.S. CASP Cohort study Checklist. 2002. Accessed 06 aug 2023. Available from: https://casp-uk.net/images/checklist/documents/CASP-Cohort-Study-Checklist/CASP-Cohort-Study-Checklist-2018_fillable_form.pdf

Zhang Q et al (2021) Serum-urine matched metabolomics for predicting progression of henoch-schonlein purpura nephritis. Front Med. https://doi.org/10.3389/fmed.2021.657073

Article  PubMed  PubMed Central  Google Scholar 

Kalantari S et al (2017) 1 H NMR-based metabolomics study for identifying urinary biomarkers and perturbed metabolic pathways associated with severity of IgA nephropathy: a pilot study. Magn Reson Chem 55(8):693–699

Article  CAS  PubMed  Google Scholar 

Park S et al (2021) Comprehensive metabolomic profiling in early IgA nephropathy patients reveals urine glycine as a prognostic biomarker. J Cell Mol Med 25(11):5177–5190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guleria A et al (2016) NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci Rep 6:35309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalantari S et al (2019) Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis. Iran J Basic Med Sci 22(11):1288–1295

PubMed  PubMed Central  Google Scholar 

Taherkhani A et al (2019) Metabolomic analysis of membranous glomerulonephritis: identification of a diagnostic panel and pathogenic pathways. Arch Med Res 50(4):159–169

Article  CAS  PubMed  Google Scholar 

Hao X et al (2013) Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS ONE 8(11):e78531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erkan E et al (2016) Distinct urinary lipid profile in children with focal segmental glomerulosclerosis. Pediatr Nephrol 31(4):581–588

Article  PubMed  Google Scholar 

Lee JE et al (2016) Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry. J Chromatogr A 1453:105–115

Article  CAS  PubMed  Google Scholar 

Samavat S et al (2015) Diagnostic urinary proteome profile for immunoglobulin a nephropathy. Iran J Kidney Dis 9(3):239–248

PubMed  Google Scholar 

Xue D et al (2023) Serum proteomic analysis by nanoflow LC-MS/MS-based proteomics in iga chronic kidney disease. Clin Lab 69(3):01

Google Scholar 

Fang X et al (2021) Use of liquid chromatography-tandem mass spectrometry to perform urinary proteomic analysis of children with IgA nephropathy and Henoch-Schonlein purpura nephritis. J Proteomics 230:103979

Article  CAS  PubMed  Google Scholar 

Kalantari S et al (2013) Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS ONE [Electronic Resource] 8(12):e80830

留言 (0)

沒有登入
gif